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ABSTRACT

Using two different approaches, the relationship between a firm’s investment and its
financial variables is examined. Imperfections in the credit market such as asymmetric
information have led researchers to explore these relationships. This study incorporates the
5 Cs of lending (character, capacity, collateral, credit rating, and capital) into the farmer’s
investment decision and explores the impacts of these variables on a basic data set. The data
set is composed of 590 Iowa farms that are members of the Iowa Farm Business Association
and have reported farm level financial and production data from 1991 to 1995.

The first approach consists of a composite regression model constructed from
various elements of traditional investment models and variables representing the 5 Cs. The
second approach derives an investment equation from the firm’s optimization problem, an
Euler equation approach. The 5 Cs of lending are incorporated into the problem through a
borrowing constraint.

The composite regression approach is conducted under a Bayesian framework with
variable selection and outlier detection components. The results imply strong support for
the accelerator model of investment and the inclusion of other relevant variables, among
them the value of short-term assets, one of the proxies for the 5 Cs. Another of the proxies,
operator age, receives less support. The Bayesian framework with the variable selection and
outlier detection components works extremely well.

The Euler equation approach is more problematic. Under the original specification

looking at net investment, all models are rejected and the most preferred model is also the



most restrictive with symmetric adjustment costs and no financial constraint. Within the
financial constraint, only the value of short-term assets and net worth are ever found to be
statistically significant. Estimated adjustment costs are either negative or positive but
extremely small. The shadow value of external finance is estimated to be around 100
percent. Other formulations, extensions, and reduced form models are explored and similar
results are found. Given the mostly negative results from the Euler equation framework,

possible reasons for them are reviewed.



CHAPTER 1. INTRODUCTION

There exists a voluminous literature studying the links between finance and
imvestment. Much of this literature is devoted to explore whether there is a link. Early
econometric works, such as Tmbergen (1939) and Klein (1951), included financial variables
in their investment analyses and found them to be significant. However, Modigliani and
Miller (1958, 1961, and 1963) found conditions under which a firm's market value is
independent of its capital structure. This implies that the firm is indifferent between
financing investment with external or internal funds. After this finding, the development of
econometric work linking investment and financial variables came to a virtual standstill.
Several recent works have sparked a renewed interest in the subject.

One assumption which leads to the Modigliani and Miller conclusion is the existence
of perfect capital markets.! However, there are several reasons to believe this is not the case
for agriculture. There are transactions costs and tax considerations to take into account.
There is an asymmetric information problem between the lender and the farmer as the farmer
knows more about his/her probabilities of success and failure than the lender does. Also,
numerous studies that included internal financial variables in investinent models have found
them to be significant. The agricultural credit scoring literature has outlined the attributes
most lenders seek in clients. These bave been summarized as the “S Cs”: character, capacity

(cash flow), collateral, credit rating, and capital (owner equity). If the farmer faces an

! The conclusion can also be reached under the less restrictive assumption that firms and investors have the
same investment opportunities (Stiglitz, 1969).



additional financial constraint due to imperfect capital markets, the constraint is likely to
depend on these 5 Cs.

In this study, we examine the relationship between a firm’s investment and its
financial variables using two approaches. In the first approach, we form a composite
regression model based on several investment models and variables representing the 5 Cs of
lending. A Bayesian method is employed to estimate the model within a variable selection,
outlier detection framework. In the second approach, we derive an investment equation
from the firm’s Euler equations.”> A borrowing constraint is added to the model with the
associated multiplier modeled as a function of the firm’s financial variables.

The present study adds to the existing literature in several ways. First, most of the
literature has focused on the link between investment and a very narrow group of financial
variables (in a majority of studies, only one financial variable is included in the model). Our
study allows for the possibility of relationships between investment and several financial
variables, thus expanding the possible linkages. Second, the Bayesian approach we have
chosen focuses on the problem of which, if any, of the S Cs of lending should be included in
investment analysis. The techniques used to perform this approach originate from very
recent works in Bayesian model selection and our study is one of the first to employ these
techniques in an econometric setting. Third, although several investment studies have been
undertaken with an Euler equation approach, most have examined aggregate data.

However, the theory behind the Euler equation approach is set at the firm level Our study is

2 An Euler equation is the first order condition for (the first derivative of the objective function with respect
to) the variable of interest.



one of the few agricultural investment studies to use the Euler equation approach on firm
level data.

Our study investigates the links between financial variables on the farm and the
investment in agricultural machinery and equipment on Iowa farms. Agricultural investment
in machinery and equipment is of interest because these inputs can be looked at as quasi-
fixed capital. These are inputs that can be taken as fixed in the short-run, but can be varied
given sufficient time and money. Investment in these inputs helps determine the long-run
performance of the farm. These inputs embody technical progress and possible productivity.
The value of these inputs forms a substantial portion of the farm’s net worth. Additionally,
the financial outlay for these inputs is quite sizable and is often not divisible.

To proceed, we outline three of the major investment models, bringing out how they
were derived and what they imply. We provide a brief literature review of past studies of
agricultural mvestment and other studies which outline our approach to the investment issue
in Chapter 2. In Chapter 3, we briefly describe the Bayesian approach and discuss model
selection and outlier detection issues. The data set is discussed in Chapter 4 along with a
detailed description of the Bayesian composite regression model and computational strategy.
The results from the Bayesian model are given in Chapter 5. In Chapter 6, we outline the
Euler equation approach and estimation techniques. Chapter 7 provides the results from that
analysis and contains a discussion on the Euler equation approach and the factors which may

have contributed to the results. In Chapter 8, implications and conclusions are drawn.
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CHAPTER 2. REVIEW OF ECONOMIC LITERATURE

2.1 Investment Models'

There are three main approaches to modeling investment behavior: the accelerator,
neoclassical, and Q models of mvestment. In the accelerator model of investment (Clark,
1917), investment is seen as strictly a function of a change in output. The simple accelerator
model is

L =aAQ + &
where I,, net investment, is equal to K, - K1, K is the capital stock, Q is the output level, A
represents a difference operator, &, is a stochastic error term, and « is a unknown parameter
to be estimated. The model assumes there are no delivery lags for the capital purchased; the
age of the existing capital (vintage effect) is immaterial; and there are no adjustment costs
arising from the addition of new capital to the production process.

Several studies found the simple accelerator model to be insufficient (Tinbergen,
1938; Chenery, 1952; Koyck, 1954). These results led to the model being expanded to
allow for delivery lags or for expectations of future output to be based upon previous output
changes. This expanded model is the flexible accelerator model and the investment equation
foritis

I = Zi:oaBjAQt-j +&,

! Most of this section is based upon an excellent review of the investment modeling literature provided by
Chirinko (1993).



where the Bjs represent lag parameters for J lags. In both of these models, (input and
output) price effects are excluded. It is also assumed that the firm has enough access to
funds to meet any investment needs and that the way in which the funds are obtained does
not affect the mvestment process.

In response to some of the theoretical lapses of the accelerator models, Jorgenson
(1963, 1971) and others proposed the neoclassical model. Under the neoclassical model, the
firm is assumed to maximize its discounted profit stream over an infinite horizon. Capital
depreciates at a geometric rate. There are no delivery lags, adjustment costs, or vintage
effects. The optimal capital level is determined by output and the user cost (rental price) of
capital. The firm can reach its optimal capital level immediately. However, the investment
relationship that is normally estimated under the neoclassical model assumes delivery lags for
new capital. Assuming the production function holds a constant elasticity of substitution (o)
between variable inputs and capital, the investment equation for the neoclassical model is
given by

I,=8K,, + ZLoaBjA(Qt_j(Ct_j-c )) +€,

where C, is the user cost (rental price) of capital’ and 3 is the depreciation rate. If & is zero,
then the neoclassical model reduces to the flexible accelerator model. If, in addition, the
new capital delivery lags are removed, then the neoclassical model becomes the simple

accelerator model.

2 This variable is be described in greater detail in Section 4.3.



However, several problems exist with the neoclassical model. For instance, the
simultaneity of the firm’s choices of output and capital stock is not adequately addressed.
Also, the optimal capital stock assumes no delivery lags, while the investment equation takes
delivery lags into account. The neoclassical model does open up investment behavior to the
effects of price through the user cost of capital; however, there is no accounting for the
sources of the investment funds or their effect on the investment decision.

The Q theory of investment more formally addresses expectations involved in the
investment process. First introduced by Keynes in 1936 and reintroduced by Brainard and
Tobin (1968) and Tobin (1969), formal models under this theory have linked investment
with marginal Q, the ratio of the discounted future revenues from an additional piece of
capital over the purchase price of the capital. In this model, the firm is assumed to maximize
its market value (the discounted sum of expected profits). The firm is a price-taker in all
markets (input and output) and faces adjustment costs when it deviates from the “average”
or “normal” investment rate. These adjustment costs are assumed to be convex which forces
the firms to consider their expectations about the future.

The financial value of firms whose stock is traded on organized exchanges can be
easily ascertained. Expectations about the future financial value of the firm are embedded in
the stock price. Thus, average Q (the ratio of the financial value of the firm over the
replacement cost of its existing capital stock) is observable, but marginal Q is not due to its
dependence upon expectations of future revenues from the additional piece of capital. For
estimation purposes, average Q replaces marginal Q in the investment equation for the Q

model. The typical investment equation used for estimation of the Q model is



k(e
where Q*, represents average Q and p', is the relative price of investment (relative to output).

Marginal Q is equal to average Q only under certain conditions (Hayashi, 1982,
1985). These are:

1) input and output markets are competitive,

2) the production and adjustment cost functions are linearly homogeneous,

3) capital is homogeneous, and

4) investment decisions are separate from other financial decisions.

Thus, to apply this model to investment, one agamn assumes that funds are readily available
and that their source is immaterial to the investment decision. Another problem in applying
this model to agriculture is that most farms do not sell stocks in financial markets, making Q
hard to determine.

In each of these models, internal and external finance are treated as perfect
substitutes. The firm is unconcerned or unaffected by the choice of internal or external
funds. This would be true if financial capital markets were perfect. There would be 1o
transaction costs or asymmetric information problems between lenders and borrowers.
Although this type of assumption may be adequate in some studies, it is hard to justify for
agricultural investment at the farm level. Many studies have investigated agricultural
lenders’ credit rating procedures, essentially examining the asymmetric information problem.
These studies suggest that asymmetric information problems are significant in agricuitural
lending. With this study, we seek to find the connection between the asymmetric
information literature and the investment literature by including financial variables into

investment models. In the Bayesian composite regression approach, elements from the



investment models above are combined with variables representing the 5 Cs of the farmer
credit situation and the absolute and relative impacts of these variables on farm machmery
investment are explored. In the Euler equation approach, a borrowing constraint, also
incorporating the 5 Cs, is inserted into the standard model to examine whether financial
variables can help explain investment decisions.

In the following section, we review the recent literature of investment studies,
categorizing them by their sector of interest. Because most of the innovations in the
mvestment literature have originated in the study of non-agricultural investment, this
literature is reviewed first. Adaptations of these techniques to agricultural investment are

then covered. We conclude with a brief look at agricultural credit studies.

2.2 Non-agricultural Investment Studies

Most of the investment studies within the past two decades can be placed into three
classes: variations on the Q model, Euler equation studies, or eclectic studies which
combine components from several different models such as those discussed above. Fazzari
and Mott (1986) is an example of an eclectic approach to investment modeling. In their
paper, they modeled investment as a function of sales, internal finance, and acceleration
variables. They proposed a positive relationship between investment and capital utilization,
proxied here by lagged sales. They also proposed a positive relationship between investment
and internal finance (the sum of after-tax profits and depreciation allowances minus

dividends) and a negative relationship between investment and payment commitments,



represented by lagged interest expenses. Looking at data for U. S. manufacturing firms from
1967 to 1982, they found support for all three of their propositions.

Fazzari and Athey (1987) continued along this vein. They examined the investment
patterns of 637 manufacturing firms from 1975 to 1985. Their investment model combined
elements from the accelerator and neoclassical models with internal financial and short-term
payment variables. The results indicated that the internal financial and short-term payment
variables have significant impacts on investment not already covered by the standard models.

The effects of working capital on investment were explored by Fazzari and Petersen
(1993). Working capital is defined as current assets (cash, inventories, accounts receivable)
minus current liabilities (short-term debt and accounts payable). The authors studied
mvestment of U. S. manufacturing firms over 1970 to 1979. Their model appended
variables for the firm’s cash flow and working capital to a typical Q model equation. Under
their theory, investment and working capital are competing for the firm’s funds and, thus,
would have a negative relationship. Their findings supported this. In addition, they also
expanded their equations to include sales, the change in long-term debt, and lagged
mvestment. Their results remained robust to these changes.

Fazzari, Hubbard, and Petersen (1988) explored the impacts of financial variables on
investment and examined whether these impacts vary by type of firm. Their models
represented various combinations of Q and accelerator models with additional cash flow
variables. Firms were classified by their dividend policy. The authors found that cash flow

has a significant impact on investment, and that impact is greater for low-dividend firms.
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Under both internal funds and Q models of investment, Chirinko and Schaller (1995)
explored why firm liquidity would matter in investment. They divided a panel of 212
Canadian firms by three criteria: maturity, owner concentration, and group membership. It
was thought that firms that are younger, that have many owners, or that do not belong to an
industrial group would experience asymmetric information problems with prospective
lenders. Thus, these firms might face financing constraints which would create a cost
difference between internal and external funds. In the internal funds models, investment was
taken to be a function of sales and internal funds. The results indicated that internal funds
alleviate short-term financial constraints, therefore affecting investment timing, but did not
change the optimal capital stock. Also, the firms considered more likely to face financial
constraints showed larger impacts from internal funds variables in their investment decisions.
The Q model specifications were augmented with firm liquidity variables. Under the Q
models, the authors found that liquidity does matter in investment.

Gilchrist and Himmelberg (1995) employed a vector autoregression approach to
construct a better proxy for marginal Q than average Q. They labeled their proxy
fundamental Q because it was based on observable “fundamentals” for the expected value of
marginal Q. To separate the effects on investment of cash flow as a “fundamental” for
marginal Q and as an indicator of capital market imperfections, two vector autoregressions
were estimated, with and without cash flow. They estimated the standard Q equation with
both average Q and fundamental Q, respectively, for the full sample of manufacturing firms

and for several subsamples based on the possibility of financial constraints. Their results

? Often referred to in the literature as Tobin’s Q.
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showed greater support for the model with fundamental Q versus average Q. Also, the
unconstrained subsamples provided stronger support for the model than the constrained
subsamples. To explore the role of cash flow in greater detail, they appended cash flow to
the Q equations. For the constrained firms, cash flow had a significant impact on
investment.

Chirinko and Schaller (1996) examined the impacts of “bubbles” on investment and
how the Q and Euler equation models of investment responded under such bubbles. A
bubble is defined as the situation where the stock price for a firm deviates from the expected
value of its future cash flow.* They examined annual data for the U. S. nonfinancial
corporate sector from 1911 to 1987. Given their hypotheses, their tests distinguished among
three cases. Both the Q and Euler equation model would be supported if there were no
bubbles in the stock market. The Euler equation model would be supported, but the Q
model would not be, if there were bubbles in the stock market, but they did not affect the
investment decision. Both models would fail if the bubbles affected investment. Their
resuits suggested that bubbles exist, but they do not affect investment.

Bond and Meghir (1994) investigated investment sensitivity to internal funds. To
include internal financial variables theoretically into their model, the authors employed a
hierarchy of finance approach. Under this approach, internal funds are cheaper than external
funds (debt and equity issues). This departed from most investment models which assume
there is no difference between internal and external funds, except possibly for tax

considerations. They estimated a regression based upon the investment Euler equation using

* The fundamental value of a firm’s stock is the expected present value of its future cash flow.
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GMM for a panel data set of British firms. They found evidence that the firm’s liquidity
matters in investment decisions.

Using an Euler equation specification, Hubbard, Kashyap, and Whited (1995) studied
the investment patterns of manufacturing firms from 1976 to 1987. They added a borrowing
constraint to the standard model to incorporate the effects of cash flow and overall
macroeconomic borrowing conditions. Their analyses were performed on the full sample
and on subsamples based on the size and dividend of the firms. For the standard model
without the borrowing constraint, the results supported the model for high dividend firms,
but not for low dividend firms. Both small and large firm subsamples rejected the standard
model. However, when the model was augmented with the borrowing constraint
parameterized with cash flow and a measure of national borrowing conditions, the results
from all subsamples supported the model. This indicated that for financially constrained
firms, both the internal and national financial situations had an impact on the firm’s
investment decision.

In an earlier paper, Whited (1992) employed an Euler equation approach to
investigate the relationship between debt, liquidity constraints, and investment for 325 U. S.
manufacturing firms. She estimated both the traditional model and an augmented model
with a borrowing constraint. The borrowing constraint specification provided an avenue for
the influence of firm financial variables. The two financial variables that were chosen for the
model are the firm’s debt to asset ratio and interest coverage ratio. The interest coverage
ratio is the ratio of interest expenses to the sum of interest expenses and cash flow. The debt

to asset ratio could be interpreted as a measure of the firm’s collateral or the firm’s current
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relative capacity for debt. The interest coverage ratio could be interpreted as a measure of
financial distress. As other studies have done, the models were estimated on the full sample
and various subsamples. The subsamples were based on the levels of the debt to assets and
interest coverage ratios, and bond ratings. The results provided evidence that the inclusion
of the borrowing constraint improves the model and thus pointed to a role for financial
variables in the investment decision. The sample splits indicated that as firms are considered
to be more financially constrained, the more likely the traditional model is rejected in favor
of the augmented model with the borrowing constraint (i.e., the more likely firm financial

variables have an impact on investment).

2.3 Agricultural Investment Studies

Gustafson, Barry, and Sonka (1988) used an experimental simulation approach to
study agricultural investment. In their study, farmers were presented with four policy
scenarios under which they would make investment decisions for their farm. Each scenario
was repeated to create a four year study period. The scenarios included a baseline run, a
lower commodity price support run, a revision of the tax code run, and an interest rate
buydown program run. Before the experiment, farmers completed surveys which provided
information on their past business performance, personal and farm characteristics,
expectations of the future farming situation, and a ranking of factors in their investment
decision. During the experiment, expected commodity prices, yields, interest rates, and
inflation rates were elicited from the farmers. Then based on these, the farmers made their

investment decisions about land and machinery with no set limitations. The financial impacts
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of the investment were analyzed and reviewed with the farmer, at which time they could
adjust their investment plan. Once the farmer had finalized the investment strategy, “actual”
prices, yields, interest rates, and inflation rates were revealed and the “actual” financial
standing of the farm was computed. This process was repeated to achieve the four year
study period. From the investment simulation results, the authors found that several
financial variables, such as farm leverage (the ratio of the farm’s total liabilities and net
worth), were significant in influencing investment.

Weersink and Tauer (1989) constructed traditional and dynamic investment models
based upon the flexible accelerator model. To the traditional model, they also incorporated
alternative investment models by including measures of the cost of capital, profit
expectations, desired capital stock, real liability, real farm net income, farm size, operator
age, and a time trend. Thus, their version of the traditional investment model was a
composite regression approach, combining elements from several different investment
models. Using a panel data set of 112 dairy farms over 10 years (1974-83) from the New
York Dairy Farm Business Summary, they found that the traditional investment model
performed better that the dynamic model. Several variables were found to be significant in
the investment decision, including net farm income and liabilities.

In their study of farm business expansion, LaDue, Miller, and Kwiatkowski (1991)
estimated the probabilities of expansion based on three categories: no investment,
replacement investment, and expansion (investment above replacement). They considered
eleven independent variables in the study: farm size (as measured by gross income),

operator age, equity ratio (net worth / total assets), farm goals, education, a management
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index, geographic location, the interest rate, urban proximity, income expectations, and farm
type. They estimated ordered logit models for a sample of New York farms in 1985 and
1986. Only two of the variables were consistently significant in the farmer’s investment
decision, operator age and gross income. They found that large farms and young farmers
were the most likely to expand, while older farmers and small farms were likely to make no
mvestment.

Jensen, Lawson, and Langemeier (1993) built a composite model based upon
accelerator and neoclassical investment models and added internal cash flow variables. The
cash flow variables were justified by pointing to the studies of agricultural lenders’ methods
for evaluating a farm’s credit rating. A linear regression composed of the important
variables from each of these prospectives was estimated for a panel data set of 522 farms
over 16 years (1973-88) from the Kansas Farm Management Association (KFMA). The
results indicated that variables from all three categories are important. The elasticity
measures of investment were most responsive to the cash flow variables.

Following the lead of Weersink and Tauer, Chellappan and Pederson (1995) formed
an agricultural machinery investment model that included elements from the accelerator,
neoclassical, and internal funds models. They also included the farmer’s age, machinery age,
and total Liabilities as other explanatory variables. Their data set was an unbalanced panel
data set of 116 farms over 6 years (1985-90) from the Minnesota Farm Business
Management Association. Farms were restricted to have at least 70 percent of farm
revenues from crop sales. The authors estimated two forms of their model: a two-way fixed

effects accounting for individuals and years, and a random effects model for individuals. The
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results of the two forms were nearly the same. Output, profit expectations, lagged capital,
machinery age, and total Liabilities were significant in their linear regressions.

Bierlen and Featherstone (1998) employed a fundamental Q model approach to
agricultural investment. Fundamental Q, as discussed in Gilchrist and Himmelberg (1995), is
a measure of the expected discounted marginal profit stream from an additional dollar
invested. The authors estimated the fundamental Qs for 405 KFMA farms over the 1973-95
period. Investment was then taken to depend upon fundamental Q and cash flow. The
model was estimated over the full sample and for selected subsamples based on operator
age, farm assets, debt-to-asset ratios, and time period. Both fundamental Q and cash flow
were found to be significant factors in agricultural investment. The time period subsample
results indicated that credit constraints were not a significant problem in the 1970s, but the
financial markets became tighter during the 1980s and early 1990s.

Using an Euler equation approach, Hubbard and Kashyap (1992) examined
aggregate U.S. agricultural investment in equipment. They incorporated a financial
constraint into the model by assuming that outstanding debt is less than a debt ceiling. This
financial constraint was assumed to hold in periods when collateralizable net worth is low.
A generalized methods of moments (GMM) estimation technique was employed in order to
estimate the nonlinear model while taking simultaneity problems into account. The authors
found support for the role of internal funds variables in investment models. One of the main
critiques of this paper is the use of aggregate data, when the Euler equation model is based

on firm level theory.
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Bierlen and Featherstone (1996) also applied an Euler equation approach to
agricultural mvestment. Models were structured assuming either expected profit or expected
utility maximization; thus, the study examined both the risk neutral and risk averse cases. As
in Hubbard and Kashyap, a debt constraint (based on net worth and a risk index) was added
to the standard model. The farmer’s utility function was taken to be negative exponential
and the parameter estimates were arrived at through GMM. Farm level data for 397 KFMA
farms over 1975 to 1992 were used in the analysis, thus avoiding the critique faced by the
Hubbard and Kashyap study. The models were estimated over the entire data set and data
splits for farm size, debt-to-asset ratio, and farmer age. The debt constraint was found to be
significant, thus implying that the farms face credit rationing. The constraint affected small

farms, high debt farms, and older farmers the most.

2.4 Agricultural Credit Studies

Many of the studies above found financial variables to be significant in the investment
decision. Hence, we have reviewed the agricultural credit literature to find the factors that
most influence the credit decision from a lender’s point of view. Rather than give an
extensive listing of the studies in this area, we have chosen two papers which summarize the
existing literature and help form the basis for our variable choices.

In their study of credit assessment models, Miller and LaDue (1989) summarized the
results from nine other agricultural credit studies. Within these nine studies, 23 different
factors had been shown to be important in assessing borrower quality. Of these factors, only

measures of solvency (owner equity), repayment ability, or liquidity appeared significant in a
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majority of studies. From this summary, the authors formed a model for the probability of
loan default. Since many measures can be constructed to represent farm financial
characteristics, an analysis of variance was performed to select the independent variables for
the model. Variables representing liquidity, solvency, profitability, and operating efficiency
were selected for the model. Results from fitting a logistic regression model indicated that
the liquidity, profitability, and operating efficiency variables were significant in assessing
borrower quality.

Knopf and Schoney (1993) looked at the use of several economic, efficiency, and
financial variables to explain agricultural loan success rates. They outlined what banks and
other lending agents seek in loan clients. These attributes were referred to as the “5 Cs™:
character, capacity (cash flow), collateral, credit rating, and capital (owner’s equity). They
began with a list of 59 candidate variables for their logit regression. To select which
variables to include in their final model, the authors employed a forward selection technique
based on Wald statistics.” Twenty of the variables were chosen for the model. The final
results showed that most traditional financial ratios added little to the loan success rate, only
the current ratio, the ratio of short-term assets to short-term liabilities, was significant. The
authors outlined several reasons why this result may have occurred, the main reason being
inconsistent variable definition and measurement.

We have presented a review of the literature on investment and the factors that may
be associated to it. In the next chapter, we take a step back and review the literature on the

statistical methods that are used to identify these relationships.

$ Model selection techniques are discussed in more detail in Section 3.3.
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CHAPTER 3. REVIEW OF STATISTICAL METHODS AND LITERATURE

3.1 The Bayesian Approach

When performing research, we often draw conclusions about phenomena based on
observed data. The techniques used to analyze and summarize data vary, depending on the
questions asked and the perceptions of what is required to answer the question. In most
econometric work, the “answers” to the questions are sumrmarized in point parameter
estimates and confidence intervals derived from classical statistical analyses. Under a
Bayesian framework, however, results of analyses are summarized into probability
distributions. We now give a brief introduction to the Bayesian paradigm. For a more
complete discussion, see Box and Tiao (1973) and Gelman et al. (1995), for example.

Let (6,, 8,) € © represent two scalar-valued parameters, and let y denote a vector of
observations. In the Bayesian approach, all parameters are considered to be random
variables. The goal in most Bayesian analyses is to estimate the distribution of (8, 62) using
information provided by the data, in addition to any prior information about (8,, 6.) that
might be available.

To proceed, we use Bayes’ theorem (or rule), which states

p(y | el,ez)P(ehez)
0,,0 = .
P9 1%) = T2y 16,,6,)p(6,.6,)0,0,

where p(6,, 8,) is the prior distribution of (81, 62), p(Y | 61, 62) is the usual likelihood

function, and
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p(Y) = [oP(¥19,,8,)p(8,,8,)0,06,
is the marginal distribution of the data, or normalizing constant. Often, the normalizing
constant is omitted, and Bayes’ rule is written in its “proportional” form

P(61, 62| y) < p(y | 61, 62) p(6:, 62).
Inferences about, e. g., 0,, are based on the marginal distribution of 6,

P8, [y) = p(8,,6, | )29, ,

obtained by integrating the joint posterior distribution p(8:, 6, | y) with respect to the
“nuisance” parameter 6,. In general, the parameter vector of interest has dimension k,
possibly large, and thus calculation of the normalizing constant and of the various marginal
denstties is difficult. We discuss this issue in the next section.

To proceed as a Bayesian, we must first construct a full probability model for all
observed and unobserved quantities in our problem. The model is written as a jomt
distribution of data and parameters, p(y, 0), and can be decomposed into two pieces, the
sampling distribution or likelihood (the conditional distribution of the data given the
parameters) and the prior distribution (the marginal distribution of the parameters). The
prior distribution represents all of the information available about the parameters before the
analysis is conducted. The likelihood function reflects information about 0 that is provided
by the data y. An important objective of our analysis is to calculate the posterior
distribution, p(6 | y), the conditional distribution of the parameters given the data. The
posterior distribution represents the updated information about the parameters available after

combining prior and sample information. Choosing prior distributions for parameters is not
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trivial. Berger (1985) and Bernardo and Smith (1994) give good discussions on the topic.
Briefly, we distinguish between informative and noninformative prior distributions, and
between proper and improper prior distributions. In this paper, we use both informative and
diffuse priors, but limit ourselves to distributions that are integrable.

In many problems, the Bayesian approach presents advantages over the frequentist
viewpoint. When the analysis involves several steps, the Bayesian framework permits
accounting for uncertainties about parameters that are accumulated along the way. Credible
intervals, the Bayesian equivalent to frequentist confidence intervals, have a more appealing
interpretation for practitioners. Modern numerical methods provide a simple mechanism for
estimating posterior distributions of any (measurable) function of the parameters in the
model. As a result of recent advances in computing and of the many numerical approaches
now available to practitioners, the Bayesian framework is used these days to fit highly

complex models to large data sets.

3.2 Numerical Procedures'

As was discussed above, applying Bayesian methods requires integration, often in
many dimensions. In our problem, for example, we would need to integrate the joint density
of the data and parameters in over 500 dimensions. Except in the few cases in which
analytical integration is possible, or in trivial problems involving just a few dimensions,

applying Bayesian methods was all but impossible until recently. In 1990, Gelfand and Smith

! This section is derived from Chapter 11 in Bayesian Data Analysis by Gelman et al. (1995) and Brooks
(1998).
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introduced to statisticians the Gibbs sampler (first proposed by Geman and Geman, 1984)
making it possible for practitioners to apply Bayesian methods to realistic, complex
problems. The Gibbs sanmpler is one of a family of algorithms called Markov chain Monte

Carlo (MCMC) methods.

The literature leading to current MCMC methods can be traced backed to Metropolis
and Ulam (1949) and Metropolis et al. (1953). These papers constructed a tool for Markov
chain simulations of probability distributions, the “Metropolis algorithm.” Hastings (1970)
extended these resuits and indicated the potential for applications in statistical analysis. In
their study of image restoration, Geman and Geman (1984) proposed what has become
known as the Gibbs sampler. Gelfand and Smith (1990) brought the Gibbs sampler to the
attention of mainstream statistical research.

We now give a brief description of MCMC methods for approximating marginal
posterior distributions. Suppose we are interested in the distribution of the parameter vector
0 and have datay. MCMC methods are employed when the posterior distribution cannot be
obtained in closed form. For example, p(0 | y) cannot be obtained in closed form if we
cannot compute the normalizing constant p(y). The idea behind MCMC techniques is
simple: generate draws, 6' (t =1, 2, ...), from the distribution of interest p(0 | y) by
generating a Markov chain in 6 whose stationary distribution is equal to p(0 | y). We use the

term “target distribution” to refer to the distribution of interest, p(Gl | y).
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An MCMC simulation proceeds in the following way. We choose 0°, a starting point
for the chain.? Then, for each iteration t (t =1, 2, ...), we draw 0" from a transition
distribution p(6' | 8°") where the transition distribution is constructed so that the Markov
chain will converge to the target distribution. After many iterations, the simulated values
from the chain can be considered as a (dependent) sample from the distribution of interest
and can be used to obtain summary statements about the target distribution. The Gibbs
sampler’® is a particular form of an MCMC simulation. In the Gibbs sampler, the Markov
chain in 0 is constructed by drawing values of @ from its conditional distribution, given the
value of 0 in the previous step. For example, let @ = [0, 0,, ..., 65 and at iteration t let
0 ~p(6;'] 6., y) where 0, = [0, ..., 6;.i', 8", ..., 6c"']". It has been shown (e.g.,
Besag, 1974) that the Markov chain formed by draws 6;', 8%, ... has a stationary distribution
equaltop(@|y) G=1, 2, ..., m), as long as certain conditions hold. The Gibbs sampler is
particularly convenient when the conditional distributions are of standard forms (such as
normal, gamma, etc.).

For MCMC methods to work, the chains must have a unique stationary distribution,
the target distribution. If the Markov chains are irreducible, aperiodic, and non-transient,
then they will have a unique stationary distribution.* The irreducibility requirement means
that any point in the parameter space can be reached from any other point in the space.

Periodicity refers to the probability of returning to a given state. A Markov chain is periodic

2 Superscripts denote iterations or links in the chain.
3 Also referred to as alternative conditional sampling.
* The definitions of the Markov chain properties are derived from Feller (1968) and Gelman et al. (1995).
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with period d if the n-step transition probability’ p°(0”| 8°) = 0 unless n =md for m an
integer. A Markov chain is aperiodic if d = 1. The non-transiency property states that the
waiting time for the chain to return to a state is finite. Given these conditions, the chain will
have a unique stationary distribution and that distribution will be the target distribution.
Geman and Geman (1984) showed that the Gibbs sampler satisfies convergence, rate, and
ergodicity properties. The convergence property states that the joint distribution

[0/, 65, ..., 8] converges in distribution to (—>) [0y, 82, ..., 8] and hence that

lim ! —=—> 6; ~p(6;) for all j.° The rate of convergence of the joint distribution is

t—>®

geometric in iteration time t. Ergodicity states that for any measurable function f{6,, 9., ...,
1
Om) whose expectation exists, _l%?zf:l (6", 8, ..., ) converges almost surely to

E[f(8,, 62, ..., O)].

Many methods will produce chains which satisfy the requirements specified above.
The differences among these methods is in the definition of the transition distribution and
probability. Following Gelman et al. (1995), we show the transition distributions and
probabilities for the Metropolis-Hastings algorithm. Suppose we are interested in the target
distribution p(8 | y). Let Ti(6, | Oy) represent a transition distribution, J,(6, | 0) represent a
jumping distribution, and r represent the transition probability. For each iteration, algorithms

proceed by drawing 6' from T«(6' | 6*"). Given 6*', T(6" | 6*") is a mixture of the point mass

5 The probability of moving from 8° back to 8" in exactly n iterations.
¢ Casella and George (1992) provided a nice convergence proof for the case of a 2 X 2 table with
multinomial sampling.
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0 ' =0"" and J(6' | 6""). The transition probability (r) is determined by a ratio of importance

ratios. Let 8" be a candidate drawn from J(0" | 6*"). Then

PO’ 1Y), |
.67 16

PO y) .
T.61187)

*

and 0" is set equal to 0" with probability r, or remains at 8" with probability 1-r. For
convenience and efficiency of the algorithm, there are several properties that the jumping
distribution should have. The jumping distribution J(6° | 8"") should be easy to sample from,
the transition probability should be easy to compute, each jump should be of a reasonable
size to expedite the iteration process, and rejection of jumps should be limited, so that the

chain does not get “stuck.”

The Metropolis algorithm and the Gibbs sampler are special cases of the Metropolis-
Hastings algorithm. For the Metropolis algorithm, the jumping distribution is symmetric

PO 1Y)

(Ju(Oa | By) = Ji(By | ©,) for all B,, By, and t) and r reduces to m.in(l, 2@ | y)J . For the

Gibbs sampler, we define the distributions for the j subvector and the t* iteration as

follows.

. _ p(G-' |9_-“',y) if 9_-' =0_ -1
. (0" 18 = J ] 3 3]
3 | ) {0 ot .

and r equals one. Thus, in the Gibbs sampler, every jump is accepted.
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For a (somewhat trivial) example’, consider the standard regression model: y ~
N(XB, o’I), where y is an n x 1 vector of observations, X = [X;, X3, ..., Xi] isthenx k
matrix of regressors, B = [B1, B2, ..., Bx]’ is a k x 1 vector of parameters, 67 is a scalar, and I
is the n x n identity matrix. Here, 8 = (B, 6°). The standard noninformative prior
distribution for (B, 6%) is p(B, 6°) < 6™>. For this model, the conditional marginal
distributions for B and o are given by p(B | &%, ¥) ~ N(B, &*(X’X)") and p(c?| B, ¥) ~

Inverse x*(n—k, s?) where P and s are the classical least squares estimates for p and .

Gibbs sampling could proceed using ﬁ as a starting value. Draw (¢%)' from p(c?] |§ ,y) and
draw B' from p(B | (6*)', ¥) to complete the first iteration of the sampler. Repeat these two
steps a large enough number of times so that the chain “converges.”

Several issues are of concern with iterative simulations such as the Gibbs sampler.
For example, the effect of starting values, the dependence in the chains, and the criterion for
convergence of the sequences may significantly affect results. Gelman et al. (1995)
recommended that several simple procedures be followed to alleviate these concerns.
Multiple chains, rather than just one, can be generated for each parameter to reduce the
dependence among sample elements, and to permit computation of simple convergence
diagnostics. The impact of the starting values can be reduced by discarding the first portion
of draws in analyses. The behavior of each scalar estimand can be monitored to decide when

the chains have converged.

7 We use this problem only to illustrate the Gibbs sampler in a simple, but widely used framework.
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The mitialization of the chains can be done in a variety of ways. The idea is to
guarantee that any value in the parameter space has positive probability of being chosen as
an initial value for the chain. One technique consists in selecting starting values as draws
from an overdispersed distribution. For example, in the regression example above, we could
select starting values for B from random draws from N(ﬁ , S$(X°X)™) or from a r-distribution

with the same mean and scaled to have a variance at least as large as s*(X’X)"". Using
multiple chains initialized in this way permits exploring the parameter space quickly and
monitoring the behavior of chains for determining convergence.

The behavior of chains is monitored by Gelman and Rubin’s R-statistic, w/fl— . The R-
statistic computes the potential scale reduction in the current distribution of the scalar
estimand if the simulations were continued to infinity. The statistic compares the relative
sizes of the between- and within-sequence variances, and provides an intuitively appealing
stopping point when both variances are about equal. Let A be a scalar and suppose we have
generated J chains (sequences) with N draws each (after removing the first halves of the
chains) from a Gibbs sampler run. Let A;; represent the i draw from the j* chain

i=12,..,N;j=1,2,...,]). The between-sequence variance is given by:
—iZ’ (A . —A)? where A —iz” A for each j and A —12’ A .. The within-
_J—l j=l j - cre 'j—N i=1 ij or eac Jan "—J j=| -j'

1
N-1

S 1 =
sequence variance is given by: W = }-Z}:lsjz wheres? = S5 -1 ;). Gelman

- = ’V N-1 1
and Rubin’s R-statistic is computed aS\/E “w whereV=—"-—W+—

N NB. Using the fact
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that r'}1m w/ﬁ — 1, convergence is considered to be achieved when all scalar estimands have

R-statistics near one.®

3.3 Model Selection Techniques

Model selection refers to the search for subsets of covariates that best associate to a
dependent variable given a decision rule. Many techniques have been proposed from both
the frequentist and the Bayesian viewpoints. Here, we outline several of these techniques.’
Frequentist methods are based on statistics such as the coefficient of determination R?), the
adjusted coefficient of determination (R?), Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC). Automatic selection methods such as stepwise,
forward, and backward selection algorithms have also been proposed from a frequentist
perspective. Bayesian techniques include model averaging and Stochastic Search Variable
Selection (SSVS). We now briefly describe each of these techniques.

Consider the following linear model, y = XB + ¢, E[e | X] =0, Var(e | X) = -o”I,
where y is an n x 1 vector of observations, X is an n x k matrix of covariates with the first
column being a vector of ones, B is a k x 1 vector of unknown parameters, € isann x | error
vector, and I is the n x n identity matrix. The variance component, ¢, is unknown. With
linear models such as this, one of the most commorly used evaluation criteria is the

coefficient of determination, R?. The coefficient of determination is defined as one minus the

8 Gelman et al. (1995) suggested values below 1.2 are acceptable. However, target levels for the R-statistics

should be set according to the level of precision required.
? For a more detailed discussion on the classical techniques, see Gourieroux and Monfort (1995), Grasa

(1989), Miller (1990), or Snedecor and Cochran (1989).
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ratio of the residual to the total sum of squares. It measures the proportion of the variation
in the dependent variable that can be accounted for by the model. Models with higher R?
provide better predictions over the sample space than those with lower R’. However, the
coefficient of determination has a significant drawback as a model selection tool. It
increases with the number of covariates in the model; thus, this measure always leads to
larger models.

The adjusted coefficient of determination, R, was proposed to avoid this problem.

It adjusts R? for degrees of freedom using the formula: R? =1— :

-1
_k(l-Rz). The

adjusted coefficient of determination, R?, is always equal to or less than R? and the
difference increases with the number of explanatory variables. Thus, R? penalizes larger
models, unless the additional covariates are significantly associated to y. Model choice
based on maximizing R? is equivalent to model selection using a minimum s’ criterion,
where s’ is the best quadratic unbiased estimator of *. The adjusted coefficient of
determination, however, suffers from an inconsistency problem. Let M; and M; be two
normal linear models with M; nested in M;. When M; is the “correct” model, the probability
of choosing M; using the R? criterion does not converge to one as the number of
observations goes to infinity (Gourieroux and Monfort, 1995).

There are two procedures which may be referred to as stepwise regression. One, the
step-up or forward selection method, begins by computing regressions of y on each
individual X; (i=1...., k). The comparison among models is based on the residual mean

square and the F-statistic that tests if the coefficient associated to each selected parameter is
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equal to zero. At each step, the F-statistic for the selected variable must exceed the chosen
boundary level or the selection process is concluded. The X; with the smallest residual mean
square is chosen. Suppose X is chosen. Next, all k—1 regressions pairing X; and X
(i=1,..., k, 1 #]) are computed and the variable yielding the greatest reduction in the error
sum of squares after fitting X is chosen. This process continues until the null hypothesis is
no longer rejected.

The other stepwise regression approach is the step-down or backward selection
method. Again the method relies on an F-test; this time variables are omitted if their F-
statistic falls below the chosen boundary level. First, the regression with all variables
included is calculated. Next, k regressions are computed with each X; (i = 1,..., k) excluded
in turn. The X; with the smallest F-statistic is dropped if its F-statistic is below the chosen
level. This process continues until no remaining variables have F-statistics below the
boundary. The use of stepwise regression methods breaks down classical inference
procedures. The models are built on the computed F-statistics and the chosen boundaries;
thus, inferences based on these statistics are no longer appropriate (Greene, 1990).

Akaike (1973) proposed a decision rule later known as AIC. The AIC for a model
is the maximum conditional log-likelihood for the model minus the number of parameters in

the model:

AIC=TX2,logf(y; |X,B) -k,
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where ﬁ is the maximum likelihood estimator of B. Model selection is based on finding the
model with the maximum AIC.'® The AIC penalizes larger models through the subtraction
of the number of parameters. The AIC suffers from the same inconsistency as the adjusted
coefficient of determination when comparing two nested normal linear models where the
smaller model is the “correct” one.

Schwarz (1978) produced an alternative to the AIC derived from Bayesian
arguments which avoids the inconsistencies R? and AIC have. This decision rule has been
referred to as BIC."" Schwarz’s BIC is defined as the maximum conditional log-likelihood
for the model minus the product of one-half of the number of parameters in the model and

the logarithm of the number of observations:
n o k
BIC=2F logf(y; | X,B) - = log(n).

When the number of observations exceeds eight, the penalty for including more independent
variables under the BIC is larger than under the AIC.

There have been several methods proposed to carry out model selection under a
Bayesian framework. One such technique is Bayesian model averaging (BMA)" put forth
by Hoeting, Raftery, and Madigan (1996). To account for model uncertainty, the modeler
averages over all possible models. Let M = (M,..., M) represent the set of all possible

models and Q represent the quantity of interest (for example, a future observation). The

19 Most statistical software packages compute the AIC as -2 times this definition, hence, the chosen model
has the smallest AIC.

! Other decision rules referred to as BIC were derived by Sawa (1978) and Chow (1981, 1983).

12 Much of the discussion of BMA follows from Hoeting et al. (1998).
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posterior distribution of Q given the data is p(Q|y) = Z&,p(Q | M,,¥)p(M; | ¥) , an
average of the posterior distribution of Q under each model M; weighted by the posterior
probability of M. As written, performing BMA can be a daunting task due to large numbers
of possible models. For k possible covariates, the number of models, K, is equal to 2*. The
authors recommend two approaches to alleviate this problem: Occam’s Window and
Markov chain Monte Carlo model composition (MC’)."

The Occam’s Window algorithm narrows the candidate model list and averages over
this reduced set of models. This ad hoc approach relies on two premises. First, any model
that predicts the data poorly compared to the model with the best predictions is removed

from consideration. This can be stated as for any model M; for which

max;({:il\/‘ll;)l e , where C is chosen by the data analyst, is excluded. Raftery,
i

Madigan, and Hoeting (1997) set C equal to 20. Second, if the data support a submodel
more than a larger model in which the submodel is nested, the larger model is removed from
consideration. Candidate models are selected by comparing the posterior odds (the ratio of

p(M;,; |Y)

14 . .
. This ratio can also be expressed as the product
pM; |y) P P

posterior model probabilities)

of the prior odds and the Bayes factor for the models. The prior odds are the ratio of prior

'3 Both approaches are discussed in Raftery, Madigan, and Hoeting (1997).
'4 Model M;,, has one more covariate than model M;.
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p(Mj-i-l)
p(M;)

model probabilities, . The Bayes factor is the ratio of the marginal likelihoods of

p(yIM;,,)
p(y M)

the models,
Figure 3.1 graphically displays the selection process.”’ The bounds, LL and UL, are
set by the data analyst. Madigan and Raftery (1994) set LL equal to 0.05 and UL equal to 1.
Raftery, Madigan, and Volinsky (1996) showed that predictive performance is improved
when UL is raised to 20. If model M is rejected, then all of the models nested within M; are
also rejected. The authors stated that this strategy often reduces the number of models to

below 25 (in fact, often to one or two models) and made it possible to average across

models.

[Keep both models |

p(Mj+l I Y)

; | N
l ! 1 b LU
= o 0% 1)

Figure 3.1. The decision rule for Occam’s Window for nested models

The second approach, Markov chain Monte Carlo model composition (MC?),
approximatesp(Q|y) = K. pQl M,,y)p(M,; | y) through a Markov chain Monte Carlo
(MCMC) approach. The Markov chain {M(t), t =1, 2, ...} is constructed with M being the

state space and p(M; | y) being the equilibrium distribution. Neighborhoods, nbd(.), are

15 The figure is based on Figure 2 of Raftery, Madigan, and Hoeting (1997).
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defined for each M; eM as the model M; and the set of models with one more or less
variable than M. A transition matrix q is also defined as q(M; > M;) =0 forall M; ¢
nbd(M;) and q(M: — M;) = c for all M; enbd(M;). Given the chain is in state M;, we draw

M.
M; from q(Mi — M) and accept it with probability min{l, -I;E—M’—:z%} Otherwise the chain

stays at M;. Given this Markov chain (t =1, 2, ..., N) and certain regularity conditions, for
A~ 1
any function g(M;) defned on M, G = EZE‘:lg(M(t)) converges almost surely to E[g(M)]

asN - o . Set g(M)=p(Q|M,y). The largest drawback to the techniques outlined for
BMA is that they require either proper prior distributions or carefully constructed improper
prior distributions for all parameters.'

George and McCulloch (1993) introduced Stochastic Search Variable Selection
(SSVS). In SSVS, a hierarchical Bayesian normal mixture model describes the regression.
Gibbs sampling is employed to sample from the multinomial posterior distribution and serves
as a way to avoid computing all of the posterior probabilities for the numerous subsets."’
Variables with higher posterior probability are identified as “promising™ regressors. SSVS
has many similarities with the MC? approach described earlier.

For a typical regression, y ~ N(XB, o°I), where y is ann x 1 vector of observations,
X=[X,, X3, ..., X(] is the n x k matrix of regressors, B = [B1, B2, -.-, Bx]” isak x 1 vector

of parameters, o is a scalar, and I is the n x n identity matrix. Not selecting X; for the

'6 A prior distribution is labeled as praper if it integrates to one and does not depend on the data.
17 Again, for a problem with k potential regressors, there are 2* subsets of regressor combinations from
which to choose.
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model is equivalent to setting f8; equal to zero. The SSVS method formulates the regression
model as a hierarchical model where each B; is modeled as originating from a mixture of two
normal distributions:
Bil 1 ~ (1 — Y)N(O,7") + yiN(0,c’t}"),

where y; equals either zero or one and p(y; = 1) = 1 ~ p(y; = 0) = p;. The variance T; is set
small (but greater than zero) and c; is set large (greater than one) so that when y; equals one,
a nonzero draw of B is included in the model, or when y; equals zero, the value of ; would
be so close to zero, it could be set at zero without significantly impacting the resuits.
George and McCulloch (1993) provided guidelines in setting the parameters. The
probability p; represents the prior probability that X; is included in the model.

Once prior distributions are chosen for the y; and 6*, SSVS employs the Gibbs

sampler to generate the following Markov chain: g°, ¢°,v°, B', 6, ¥', ... , where B° is the
least squares estimate of B, o is the least squares estimate of ¢%, and y° is a vector of ones.'®
Parameters B', ', and ¥ (t =1, 2, ...) are drawn from their conditional distn'butions: Once
convergence of the sequence is attained, the y draws provide evidence on promising
regressor subsets based on posterior probabilities. George and McCulloch (1997) extended
the SSVS method to the case of more general models. Criticisms of the SSVS method are

that, in the original formulation, regressors are never actually removed from the model but

their parameter is set close to zero with a high probability (Raftery, Madigan, and Hoeting,

18 These settings initialize the Gibbs sampler.
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1997) and the variable selection process is based on practical significance, not necessarily
statistical significance.

Geweke (1996) presented an approach to variable selection similar to SSVS and
MC’. The prior distributions for the parameters are mixtures of normal distributions and
point masses at zero (to indicate the variable is not selected for the model). Computation is
performed using a Gibbs sampler with complete blocking. Each parameter is drawn from its
distribution conditional on the values of all of the other parameters.”’ To define these
conditional distributions, we look at a simplified model For B;, given 8, (p=1,2, ..., k;

p#j)and o, we definez; = y; - X,.;8,X;, . The simplified model is then z = B;Xi; + &, &

~N@©,5) (=1, ..., n). The decision on whether §; = 0 or B; # 0 is based on a comparison

of a draw from a uniform(0, 1) random variable and the conditional posterior probability

— _ . .. . .. = _ =j
(P;) that B; = 0. This conditional posterior probability is calculated as p; p_+(1—pj)BF
L 4

where gjis the prior probability that §; = 0 and BF is the conditional Bayes factor for B; = 0
versus f; = 0. If BF is large (small), then p_is small (large). Larger Bayes factors for §; # 0
-

versus f3; = 0 lead to smaller conditional posterior probabilities that B; = 0 and greater
chances for the variable to be included in the model. If §; # 0, then B; is drawn from its
conditional distribution. The main drawback to this approach is in computational speed.

For larger models, SSVS and MC’ are likely to be quicker. In this paper, we apply

' For example, B; is drawn from its distribution conditional on B, (p=1,2, ..., k; p# j)and o.
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Geweke’s approach to select the “best” set of regressors for our mixed model. We choose

this method over the others because of ease of interpretation and implementation.

3.4 Parameter Estimation in the Presence of OQutliers

An observation is labeled as an outlier if it appears to be inconsistent with the rest of
the data set (Barnett and Lewis, 1984). Outliers can result from recording or transmission
errors oOr can represent actual observations which indicate the data generating mechanism is
more complex than the modeler had originally thought. Outliers of the first type can be
corrected, if detected, and employed in analyses. Qutliers of the second type require the
modeler to expand the model to explain the pattern being seen. In either case, since outliers
can have a pronounced effect on the results obtained through analyses, outliers need be
detected and handled appropriately.

The two major models for outliers are the slippage and mixture models. In a data set
of n observations with r potential outliers, a slippage model assumes n—r observations
originate from N(i, %) and r observations originate from a different distribution. There are
two main types of slippage models, location-shift and scale-shift. In a location-shift model,
the r observations come from N(jt + 0, 6*). In a scale-shift model, the r observations arise
from N(u, 9o?). A mixture model approach would assume the n observations are drawn
from a combination of two or more distributions. Let D, represent the distribution that
generates typical data and let D, be the distribution that generates the contaminated data.
Beckman and Cook (1983) define a contaminant as “any observation that is not a realization

from the target distribution.” Then the observations originate from (1-p)D,; + pD- where p
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is a fixed constant that represents the probability of being an outlier. If p =0, then there are
no outliers or contaminants (Iglewicz and Hoaglin, 1993).

Detection of outliers often occurs through graphical exploration of the data or during
an analysis of residuals after an initial model run. Once outliers have been detected, the
modeler must choose how to proceed. One extreme option would be to remove the outliers
from the analysis. There are several concerns with this option. The outliers may represent
an actual data phenomenon, not errors in the data. Any information the outliers would have
on the issue being explored would be lost.

Other modeling techniques to incorporate outliers rely on weighted analyses of the
data. Standard statistical methods, such as ordinary least squares (OLS), can be quite
sensitive to outliers. Under OLS, all observations are given the same weight and the
technique minimizes the sum of squared errors. In the presence of outliers, equal weights
may be an incorrect approach. Weighted least squares attaches weights to each observation
and minimizes the sum of weighted squared errors. Qutliers receive less weight or
importance in the analysis. If the variance structure of the data were known, the correct
weights would be inversely proportional to the variance of each data point. However, in
almost all statistical work, such knowledge of the variance structure does not exist (Everitt
and Dunn, 1991).

One explanation for outliers is heteroscedasticity of the data, the variance structure
of the data is not constant across observations. In a regression framework, if the data are
heteroscedastic but otherwise pairwise uncorrelated, then OLS provides unbiased, but

inefficient, parameter estimates. The frequentist approach to handling outliers depends on
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the knowledge of the variance structure. If the variance structure is known, weighted least
squares can be employed to estimate the model. If the variance structure is unknown, a two-
step estimation procedure, such as feasible generalized least squares (Greene, 1990), or
maximum likelihood is employed. In the two-step procedure, estimates of the variance
structure are obtained first, then the parameter estimates are based on these variance
estimates.

To illustrate the above procedures. consider the following linear model, y = XB + ¢,
E[e | X] =0, Var(e; ) = 6 = c’w;, where y is an n x 1 vector of observations, X isann x 1
vector of covariates, B is an unknown scalar parameter, and € is an n x 1 error vector. The
variance component, ¢, is unknown. The weights @ satisfy I°,0; = n. Ifthe
disturbances are homoscedastic, then ®; = 1 for all i. Heteroscedasticity implies that the

weights o; differ. For the regression estimates, OLS computes B o as [X’X]'X’y. Let

l'm, 0 - 0
0 o 0
Q=] . : ..

0 O @,

If Q is known, then the generalized least squares (GLS) estimator of B is g =
X’'Q'X)'X’Q'y. The variances of the estimators are

- 2ym X 4
Var(Bors) = XX X°Q 'X][X'X]" = E;‘ :Z l;fiz and
i=14%

2

Var(Bas) = QKT = =
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The relative inefficiency of OLS is given by the ratio of these variances.

VarBors) _ nZLX*
VarBes) (£2,%2)°

If Q is unknown, then two-step GLS or maximum likelihood could be employed to obtain
parameter estimates. In two-step GLS, estimates of 5;>, G, are formed from the least

squares residuals and used to compute the estimator of B,

f= [Z(gl‘)X,J[Z(;I‘)X,y:I

Under maximum likelihood, the estimators of B and the o;* are found by maximizing the log-

like]ihOOd ﬁ.lnction,
2 - 2 i=1 c i iz (yl i)

(Greene, 1990).

Bayesian approaches to the incorporation of outliers in analyses rely on the use of
long-tailed distributions or mixture distributions to capture the information provided by the
outlying points. Long-tailed distributions place substantial probability away from the center
of the distribution. The family of ¢-distributions (with degrees of freedom below 10) is a
classic example of long-tailed distributions. Mixture distributions are combinations of

distributions weighted by probabilities. One example is a contaminated normal distribution.

N(0,06%)  withprobability 7

In a contaminated normal distribution, 0 ~ , where ©*
aco no o {N(O,lczo'z) with probability l-n} where k

is a variance-inflation parameter. Box and Tiao (1968) give an early example of this
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modeling strategy. In this paper, we follow this mixture model structure for outliers. We
choose this method over alternative approaches because of the ease of interpretation and
implementation and the pattern of outliers we would expect to see from a data set such as

ours.



42

CHAPTER 4. MODELING INVESTMENT DECISIONS THROUGH A
COMPOSITE REGRESSION

4.1 The Data Set

The data employed in this analysis originate from the Individual Farm Analysis data
set of the Jowa Farm Business Association. The lowa Farm Business Association has been
collecting the Individual Farm Analysis data set for a number of years. We were allowed
access to the 1991-95 individual farm records. For each year the data set contains detailed
production and financial information for over 1,000 Iowa farms. Income is subdivided into
livestock, crop, non-cash, and non-farm sources. Expenses are categorized as cash
operating, cash fixed, livestock, and non-cash expenses. Several subcategories are included
in each income and expense category.

The data are collected by lowa Farm Business Association consultants. Farm
records are kept on an inventory basis under standardized accounting procedures. The value
of rented land is not included in the farm’s asset and liability data. Also, only the fm-'mer’s
share of income and expenses are included from rented acreage. Information is also
provided on the total resources on the farm, economic depreciation of assets, farm net
worth, farm habilities, and crop (or livestock) specific figures on revenues and expenses.
Overall, the data set contains over 700 variables for each farm. After combining the 1991-
95 data sets, we found that 667 farms had provided records for each of these years.

Of the 667 farms, 46 were missing liability and net worth information and 9 were

missing machinery value information for which we could not recalculate the missing figures.
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These farms were removed from the analysis. After a discussion with Mr. Duane Bennink,
the supervisor of the Iowa Farm Business Association data, 22 other farms were also
removed from consideration due to extremely large changes between previous end-of-year
values and beginning-of-year values or to having investment ratios (the ratio of investment to
the capital stock) greater than 10. This left data on 590 farms for analysis. The variable
lagged age of the farm operator appears in the models used in this work. For 25 of the
farms, age information was not provided by the farmer. The missing data were imputed
using the age distribution for farmers in Iowa reported in the 1992 Census of Agriculture.
To provide some information on the type and size of farms in this panel data set, we
present 1991-95 average values for net farm income, total farm resources (measured in
dollars), total acreage, total crop acreage, total livestock sales, and total crop sales in Table
4.1. These averages were computed using 2,950 farm level observations. Over the five
years, the farms in this data set have an average annual net farm income of over $45,000.

On average, the farms have annual sales of nearly $220,000. The farms average 532 total

Table 4.1. 1991-95 average annual values

Variable Average
%)
Net Farm Income 45,789
Total Farm Resources 564,677
Total Livestock Sales 121,860
Total Crop Sales 96,832
(acres)
Total Farm Acreage 532

Total Crop Acreage 477
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acres, 477 of which is planted to a crop (or counted in federal crop programs). Crop sales
account for an average of 56 percent of total sales receipts on the farm.

The farms in this data set are a self-selected sample. The farmers represented here
have chosen to submit information to the lowa Farm Business Association. To see how this
self-selection might impact the analysis, we have compared the data set to figures for all
Iowa farms in the 1992 Census of Agriculture. Figure 4.1 shows the comparison for farm
size. The data set underrepresents both large (more than 2000 acres) and small (less than
180 acres) farms and overrepresents the farms in-between. Similar patterns emerge in the

comparisons for machinery value and operator age.

50% —
45% —

40% —

35% — ' 1992 Census.
30% — '@ Sample

25% ~
20% —
15% -
10% +
5% —
0% -

Percentage

1-49 50- 180- 500- 1000- 2000+
179 499 999 1999

Farm Size (acres)

Figure 4.1. Farm size comparison between the 1992 Census of Agriculture and the sample
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4.2 Exploratory Analysis

Many of the variables in the data set detail the allocation of resources to various farm
activities, revenues, and expenses and thus are not relevant to this analysis. The variables
chosen for inclusion in this study represent various formal investment models or serve as
proxies for the 5 Cs of lending. The data set contains several financial variables for the
farms. The choices of net worth and the liability figures from these financial variables is
explained below.

During the process of gathering and managing the data, we began the estimation
procedure by examining the data through simple graphical and statistical techniques. Such
techniques can provide a quick check of the data structure and point out possible data
inconsistencies.' The data manipulations mentioned in Section 4.1 followed an initial
estimation of summary statistics on the data. The data set contains a large number of
variables which could have been employed in this study. To narrow our focus, we examine
the relationships among the prospective regressor candidates and the dependent variable,
machinery and equipment investment. In the agricuftural investment literature, several
factors have been shown to affect the investment decision. The accelerator model of
investment links changes in output to investment. The neoclassical model connects the user
cost (or rental price) of capital to mvestment. Other investment studies have chosen to
include a single farm financial variable, such as net worth or the debt-to-asset ratio, in their

analysis and found a significant relationship between it and investment.

! In the first scan of the original data, we found a farmer reported to be 447 years old. Additional data
indicated that the number should have been 44.



46

Given the many financial variables provided in our data set and the various forms
these financial variables can take,’ considerable exploratory analysis was performed. One
potentially large problem with the inclusion of several farm financial variables in econometric
work is multicollinearity. The accounting structure of financial variables can lead to exact
muiticollinearity. For example, net worth is equal to the difference between total assets and
total Liabilities. After examining correlations among several financial variables both in level
and ratio formats, it was found that using the variables in the standard financial ratios would
increase the likelihood of collinearity problems. Thus, we proceed with the financial
variables in level form. To maintain consistency across the two approaches employed in this
study, several cash flow measures were removed from consideration as regressors.3

The original structure of the model included individual farm intercepts. After some
initial examination of the data, we decided to explore whether investment may have an
autoregressive component. We estimated both a simple regression and a random effects
model* of investment with lagged investment and squared lagged investment. Both models
suggested the inclusion of an autoregressive component in the investment model.

In Table 4.2, the summary statistics for the study variables are given. The data set

contains 1770 observations. All monetary values are deflated. Output is measured by total

? For example, current liabilities could be brought into a model in level form or through a ratio form, such as
the current ratio (current assets/current liabilities) or the current debt ratio (current liabilities/total
Habilities).

3 In the Euler equation approach to investment modeling, it is the farmer’s cash flow that is modeled. Thus,
when a cash flow variable is added to the structure used in this model, twice-lagged variables are required to
proceed. Given the short time frame of the data set, we decided against employing such variables in the
analysis.

* The random effects are year intercepts to capture aggregate economic events that impact all farmers.



47

cash farm income. The cost of capital’ is an index representing the price at which capital

may be obtained. The farms within the data set vary a great deal in size. In general, the

farms were growing over the time period, as can be seen from the average mvestment and

output change figures. But some farms did go through quite dramatic business contractions.

Operators ages ranged from the lower 20s to nearly 80.

Table 4.2. Summary statistics

Standard
Variable Mean Deviation Minimum Maximum
Investment (I";;) 5001.21 23193.67 -117937.22  149683.44
Change in output (AQ;;) 10415.77 6965432  -915386.52  480314.47
Value of short-term assets (Viy) 170280.24 132051.93 0.00 1514305.94
Cost of capital (C.y) 22.65 1.85 19.76 26.73
Lagged operator age (AGE;;.1) 46.90 10.97 23.00 79.00
Lagged total kLabilities (TLis1) 170890.85 187674.57 0.00 1211338.00
Lagged net worth (NW,,.;) 450020.65 378784.87  -100880.00 2360768.00
Lagged current liabilities (CLi1)  62650.95 88206.25 0.00 799883.00
Lagged machinery value (Ki;.1) 99579.27 69055.56 1205.10  444220.00
Lagged investment (INLH) 7103.65 22656.15  -128708.96  149683.44

Disinvestment (negative investment) was reported 51.2 percent of the time, with
extreme disinvestment (greater than $50,000) occurring 0.7 percent of the time. Annual
investments of over $100,000 took place in 0.8 percent of the observations. In 81.7 percent
of the observations, farmers reported that they faced some level of debt and at least part of
the debt was due within the next year 72.4 percent of the time. Four farmers reported
liabilities above $1 million. Nearly ten percent of the observations showed farms with a net

worth exceeding $1 million, while 1.2 percent displayed a negative net worth. Only one

% The cost of capital is explained in more detail in the next section (Section 4.3).
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percent of the observations reported farm machinery values below $10,000. Meanwhile, 1.7
percent of the observations showed farm machinery values above $300,000.

As discussed earlier, the presence of multicollinearity among the variables is a
distinct possibility when examining financial data. Table 4.3 displays the correlation matrix
among the variables in this analysis. As might be expected, the highest degree of correlation
is between the level of current and total liabilities on the farm  The value of short-term
assets, net worth, and the value of machinery on the farm are also quite correlated among
themselves and with the liability figures.

Table 4.3. Correlation matrix
N AQi; Vis Cu: AGEi1 TLig.a NWi  CLia K

AQi; 0.07

Viz 0.14 0.07

Ci -0.04 031 0.23

AGE;;. -0.10 -0.06 0.06 0.02

TLis 0.05 0.08 0.45 0.04 -0.03

NWi,. 0.05 0.00 0.60 021 035 0.3

CLis1 0.06 0.09 0.53 0.05 -0.03 0.77 0.10

Kt -0.01 0.06 0.52 0.18 0.03 047 0.52 0.39

fii:‘;‘ 0.03 0.04 0.12 0.05 -0.07 0.09 0.10 0.09 033

To show the distribution of investment values, we have formed a histogram of the
values in Figure 4.2. As the figure shows, most of the investment moves made by these
farmers are made to maintain the capital stock. Nearly 80 percent of the investment totals
are between -$20,000 and $20,000. The average investment rate is five percent of the
capital stock. The distribution of investment values is somewhat skewed. The mean value is

just over $5,000, while the median value is -$287.
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Figure 4.2. Histogram of investment values

The histogram of investment values also shows that outliers may exist in the data set.
There are several large positive and negative investment values. In a typical regression
analysis, these points could have a significant impact on the results. To explore these points
further, we have produced scatter plots of the regressors versus investment (Figures 4.3-
4.11). Ineach of these plots, the regressor is shown on the horizontal axis and investment is
shown on the vertical axis. After reviewing these graphs, we decided to include an outlier
detection component in the final model. Since the graphs indicate the possibility of outliers
with extremely high and low investment values, we have chosen a variance-inflation model

to capture any outliers.
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Figure 4.4. Scatter plot of the value of short-term assets vs. investment
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Figure 4.7. Scatter plot of lagged total liabilities vs. investment
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Figure 4.9. Scatter plot of lagged current Labilities vs. investment
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Figure 4.11. Scatter plot of lagged vs. current investment

4.3 The Model

In this analysis, we examine agricultural investment in machinery and equipment for
Iowa farms. We form an investment regression model by combining aspects from the
accelerator and neoclassical investment models with other possibly influential variables such
as internal financial variables. Inclusion of the internal finance variables can be justified
through claims that farms face financial constraints in their investment decisions. Financial
constraints would arise if there is an asymmetric information problem between the
prospective lender and the farmer or if there are substantial transactions costs to obtaining

outside financing.
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Let subscripts i and t represent farm and year, respectively. Net investment (I",,) is
measured as the difference between the value of machinery and equipment at the beginning
and the end of the year. The investment regression includes variables representing changes
in output (AQ;;), the value of short-term assets (Vi;), the cost of capital (C;;), owner net
worth (NW;,;), total farm liabilities (TLi,.1), current Liabilities (CLi,.1), and operator age
(AGE;,.), along with the previous values of machimery and equipment (K;.1) and investment
(I"L,.l). The value of short-term assets, net worth, farm liabilities, current Liabilities, and
operator age are chosen to represent the 5 Cs of the farmer credit situation. The form of the
regression is

MNix = Bo + ZBiXiss + ZBi(Xi . Xipe) +Ei
where the By, are unknown parameters to be estimated, the Xs represent the various
regressors, and €;; is the regression error. The model has nine main effects and 45 cross

effects. The user cost of capital (Ci,) originates from the neoclassical model of investment.

The equation for computing C;; is given by

K K K
P Pt—D 1
Ci,t=(l_n;t]|i(l_mi,z)8+ft"( tI’Kt t J:l’

where p* represents the price of new capital, m, is the marginal tax rate, § is the capital

depreciation rate, and r, is represents the interest rate.
We employ both classical and Bayesian techniques to estimate the parameters in the
regression model. Due to the panel structure of the data, classical methods would include

the addition of either random or fixed effects to the regression. In this case, a typical one-
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way fixed effect model would ap@d separate intercepts for each year to the equation. The
resulting regression model is given by

i =Bo+ ZBiXine + ZBi(KipeKipa) + Yo €
where the y; are year intercepts. A random effects model for the regression includes year
intercepts and assumes that the y, have the following properties: Efy:] =0, Var(y,) = cyz,
and Cov(ys, &ir) = 0.

For the Bayesian approach, we formulate our regression model as a hierarchical
normal linear model. We use Geweke’s (1996) variable selection method to choose
regressors. Because exploratory analyses of the data indicate that outliers may be present,
we model the residuals €;; as coming from a contaminated normal distribution, as described

in Section 3.4. For the investment model given above, we assume that y; ~ iid N(0, cyz) for

N(0,c.>)  withprobability 1

N(0,x%c,?) withprobability 1— n} where « is a variance-inflation

alltandsm~{

parameter. Let B’ = (Bo, B1s ..., Bss), Xi; be the row vector of regressors for the it
observation, and 6;, be one if ;; ~ N(0, o.”) and zero otherwise. The distributional
assumptions, combined with the regression equation, imply that I, | y:, B, Xis, 6, 6%, 6ir ~

NG + XisB, 02(6i; + & — K6;))).

4.4 Prior Distributions
In the Bayesian framework, y;, B, and o are the parameters of the model, and 1y, 6i;,

and o,” are the hyperparameters. The joint posterior distribution of all parameters in the
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model is obtained by combining the likelihood function with prior distributions for the
parameters and hyperparameters. For c.2, we chose a noninformative prior distribution,
p(c:?) < 1/o2. For cyz, we chose an informative prior distribution, cyz ~ Inverse-x*(no, Go’).
An informative prior for o,” was chosen because the data contain little information about the
effect of time on investment. The effect of the informative prior can be thought of as adding
no observations with an average squared deviation of G, to the analysis of o,>. A priori, 6.
and o, were modeled as independent parameters. Thus, p(c:’, 6,9 = p(c)p(s,d).

The prior distributions for 1} and 6;, are Beta distributions,

p( |1, ) « N1 - 1)® Y and p(Bic| M) « n°e(1 - )" %2,

respectively. We set the hyperparameters y and ¢ to values that reflect our prior beliefs on
the proportion of potential outliers that may be present in the data set. To assess the
sensitivity of the results to the priors for the variable selection and outlier detection
components of the model, we estimate the model under ten various combinations of priors.
For the outlier detection component, we use three sets of prior distributions for the outlier
detection parameters: a prior strongly suggesting that 10 percent of the observations are
outliers (y = 18, ¢ = 2), a weaker flat prior suggesting that 50 percent of the observations
are outliers (y = 1, @ = 1), and a prior strongly suggesting that 90 percent of the
observations are outliers (y =2, @ = 18). For the variable selection component, we also
employ three priors: a prior suggesting a 10 percent probability that each regressor (main

and cross effects) is included in the model ( p= 0.9); a prior suggesting a 50 percent

probability (gj= 0.5); and a prior suggesting a 90 percent probability ( P= 0.1). The nine
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combinations of these priors are all examined, along with a run assuming that the data set
contains no outliers and that each variable has a 50 percent prior probability of being

included in the model. In total, 10 estimations are performed.

4.5 The Gibbs Sampler for the Mixed Model with Variable Selection and
Outlier Detection

Given the model specified in Section 4.3 and the prior distributions for the
parameters specified in Section 4.4, the Gibbs sampler for this problem has six major
components:

1) simulation of the main outlier distribution parameter, 7,

2) simulation of the main error variance, o,

3) simulation of the annual random effect variance, o,’,

4) simulation of the annual random effects, y:,

5) simulation of the individual observation outlier detection parameter, 6;,, and
6) simulation of the parameter vector, B.

We have designed our Gibbs sampler to handle these simulations in the order given above.

The conditional distribution p(n | IVi; , v, B, Xis, 0%, Gy, 6iy) is a Beta distribution,
11N, o B, Xig, 07, 6,7, 05 ~ Beta(z:;lzz-.lei,: +7v,0T~ Z?:lZ;l;lei,t ""P) >

where n is the number of farms, T is the number of years, and the hyperparameters y and ¢

are values that reflect our prior beliefs® on the proportion of outliers that may be present in

the data set.

The conditional distribution for the main error variance, o.-, is given by an Inverse-

Gamma distribution,

¢ We examine three sets of priors, as explained in the previous section.
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2
M. -X B-y
o’ | Ny, vio B, Xiss M, 6,7, i, ~ Inverse-Gamma| 05nT, 0522, X, (( SR t)

>

0;, +x? - K29L,)
where x? is the variance-inflation parameter. The conditional distribution for the annual
random effects variance follows a similar structure,

o2 11, Yo B, Xis, M, 62, 8, ~ Inverse-Gamma(05(T + 1, ), 08(ng0? + Ziy.?)).

where no and 6,° are hyperparameters from the informative prior placed on 6.

For the annual random effects, each effect has a Normal conditional distribution,

c,? N it — X; B 1 1 -
» l INi.! > cyz, By xi.!: n, Gtza ei.t -~ ([ z ) - ( . ) > 2 W+ 2
G, G

2 2 i=1 2 2
68 +cy W (ei’t +K —K ei't)

1

5 3 o ) . The conditional distributions for the outlier indicators
it +K" —K it

where W= X2, (

( -1 (INi.l_xi,tB_Yt)zJ

\2622 (Bi‘t +x? —xzei,,)

8.
are given by p(8ic | IViy, Yo B, Xiss M, 02, 6,°) (l‘inn) =P

Since 0;, can only take on the values of zero and one, we can see that

p
p(©®:: =0 | I"it, Yo B, Xip, 1, 6.7, 0,°) = Po -: P
P
p(ei.t =1 l INi.ta Yo, Bs Xi.t: n, 682’ Gyz) - Po ;pl

(M -X B-y.)
2«x%c,?

(

K1) -1 2
where po = exp and p; = (l-n)exP(Zc 3 (INi,x _xi,tB-Yt) ) .
€
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Again, for the regression parameters, we are following the procedure outlined by
Geweke (1996). Given 6i,, Vi, v, Xis, 1, 62, 6,%, and B; (j # k), the conditional
distribution of B originates from the simplified model:

N(0,6,2)  withprobability n }

. = . + e . wh . - . .
%t = BeXies * 6, Where &g {N(o,xzc:) with probability 1- 7

_ 2
where z;; = INL,—Z#k B;Xi.j — Y Assuming a Normal prior on By, p(Bx) < exp( ZE"Z ) .
k
Then, given the prior probability that B, =0, P, - the posterior probability that B, =0 is
given by

P

=k

_p—k = ’
(Bk + [1 -P, ]BF)

where BF, the conditional Bayes factor in favor of B« # 0 versus Bi = 0, is given by

” -0.5
1 1 itk 1
BF: _— _ZZLIZ};[ Xl;'k 5 - 2
tk 68 (ei'( +K”"—K ei't) tk
( 1 X, : X. .2 1 N
itkZi 1 itk
exp| 0. ZLZL LE 2D = - .
\ 5{0':2 141 1(ei't ki Kzei't) o.ez 1 &n=1 (ei.t +1<2-K29i',) tkz

The posterior probability Bx # 0 is equalto 1 — P, .

4.6 Computational Strategy
As stated before, the analysis consists of ten separate Bayesian estimation runs.

Within each run, the Gibbs sampler will simulate four chains of 12,000 iterations each.
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Thus, each estimation will contain 48,000 draws. The variance-inflation parameter, x, is set
at four for all runs involving outlier detection. For the prior on 6%, we chose o, ~ Inverse-
1°(20, 0.45), effectively adding 20 observations with an average squared deviation of 0.45 to
the analysis of 6,°. An intercept is always included in the model and the prior standard
deviation (t) for it is set at 0.7. The prior standard deviations for the other regression
parameters are set at one. The other prior hyperparameter settings are given in Section 4.4

Starting values are chosen systematically just for convenience. Doing this does not
present a problem as long as the chains are “long enough™ so that the runs converge. The
properties of the Gibbs sampler’ imply that the chains will have a unique stationary
distribution and that distribution will be the target distribution. The first half of each chain
(6,000 iterations) is discarded as a burn-in procedure. Convergence is monitored by Gelman
and Rubin’s R-statistic, VR .* In checking convergence, we examined all parameters
including the random effects, the variance components, and the outlier distribution
parameter.

The simulation programs are written in C++ and are complied by Borland C++
Builder 3. The distribution subroutines are C++ programs contained in the SUM module of
the M++ Version 7.0 libraries from Dyad Software Corporation. A typical run would last
seven hours on a Micron personal computer with a Pentium 166 MHz chip and 48

megabytes of RAM.

7 These properties are outlined in Section 3.2.
8 This statistic is described in Section 3.2.
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CHAPTER 5. COMPOSITE REGRESSION RESULTS

5.1 The Classical Mixed Model Resuits

We first estimate the parameters in the random effects model using classical methods.
The random effects are represented by annual intercepts. The parameter estimates are given
in Table 5.1. The model was fitted on a personal computer using SAS 6.12 for Windows.
Several of the main effects are significant. Changes in output, the value of short-term assets,
and net worth have a direct relationship with investment, while operator age and the value of
machinery and equipment have an inverse relationship with investment. For the squared
terms, only the cost of capital is significant. Of the 36 cross effects, seven have parameter
estimates significantly different from zero. The variance estimates indicate that the residual
error is nearly seventeen times more variable than the random effects.

From these estimates we have caiculated the expected change in investment related
ox

to a one unit change in each regressor and the elasticity (ay -:;) for each regressor to

examine the absolute and relative impacts. Given the skewness in the investment data, we
calculate these measures at both the mean and median values for all variables. Table 5.2
shows the mean and median values of investment and the regressor variables. In almost
every case, the mean value is larger than the median value. The median value of current
investment is negative, indicating real disinvestment on the farm. The change in the sign of
the investment variable from the mean value to the median value will cause the elasticities

and expected changes to also change signs. Table 5.3 displays the expected changes and



Table 5.1. Mixed model results

63

Standard

Effect Estimate Error t Pr>|t]
Intercept 0.73 033 2.18 0.16
AQ;. 0.039 0.011 3.50 0.00
Vie 0.0377 0.0098 3.86 0.00
Ci; 0.058 0.064 0.90 0.37
AGE;,. -0.0342 0.0062 -5.51 0.00
TLiz 0.0017 0.0070 0.24 0.81
NWi 0.0070 0.0032 2.19 0.03
CLixi 0.007 0.017 0.41 0.68
Kt -0.050 0.015 -3.30 0.00
| -0.051 0.032 -1.61 0.11
AQi 0.00015 0.00041 0.36 0.72
Vii 0.00019 0.00036 0.52 0.60

i -0.056 0.024 232 0.02
AGE;. 0.00011 0.00044 0.25 0.80
TLiwt -0.00003 0.00024 -0.14 0.89
NWi.? -0.000021 0.000051  -0.41 0.69
CLi. -0.0017 0.0010 -1.67 0.10
Kiwn? -0.0024 0.0015 -1.66 0.10
N 0.0081 0.0049 1.64 0.10
AQi*Vi, -0.00145 0.00061 238 0.02
AQi*Ci, 0.0005 0.0050 0.10 0.92
AQi.*AGE;,. -0.00175 0.00092 -1.91 0.06
AQi*TLis 0.00007 0.00058 0.13 0.90
AQi*NWiy 0.00052 0.00028 1.86 0.06
AQ;i*CLi.. 0.00005 0.00093 0.05 0.96
AQi*Ki -0.0002 0.0017 -0.13 0.90
AQi*TNis 0.0035 0.0031 1.10 0.27
Vi*Ci, 0.0059 0.0035 1.66 0.10
Vi*AGE 0.00089 0.00073 1.21 0.23
Vie*TLis 0.00084 0.00048 1.72 0.08
Vi*NWio -0.00047 0.00023 -2.06 0.04
Vii*CLiy -0.00063 0.00092 -0.68 0.49
Vir*Kipa 0.0000 0.0011 0.01 0.99
Vi Vi 0.0015 0.0027 0.57 0.57
Ci*AGEi,.. -0.0016 0.0032 -0.49 0.62
Ci*TLiy -0.0011 0.0027 -0.41 0.68
Ci*NWi,., 0.0006 0.0013 0.50 0.62
Cis*CLis1 -0.0038 0.0059 -0.64 0.52



Table 5.1. (continued)

Standard
Effect Estimate Error t Pr > Jt|
Cit*Kist -0.0198 0.0064 -3.09 0.00
Cir* Nt 0.009 0.016 0.58 0.57
AGE; . *TLi -0.00071 0.00059 -1.22 0.22
AGE; . *NW,,, -0.00017 0.00025 -0.70 0.49
AGE;,..*CL;,. 0.0005 0.0013 0.43 0.67
AGE,; .1 *Ki -0.0032 0.0013 -2.45 0.01
AGE;,..*TV.,. 0.0042 0.0031 1.35 0.18
TLit 1 *NWiy -0.00007 0.00017 -0.41 0.68
TLi*CList 0.00077 0.00080 0.97 0.33
TLis1 *Kig -0.00147 0.00080 -1.83 0.07
TLi* i 0.0006 0.0017 0.36 0.72
NWi..*CLig -0.00015 0.00035 -0.43 0.67
NW.. *Kiei 0.00103 0.00043 2.38 0.02
NWo* TN -0.00209 0.00089 -2.34 0.02
CLit1*Kiz1 0.0034 0.0017 1.97 0.05
CLizt* i 0.0016 0.0044 0.37 0.71
Kir1*INir 0.0118 0.0048 2.45 0.01
Covariance
Parameters Estimate
o‘y2 0.29
o> 4.78

Table 5.2. Mean and median values of the variables

Variable Mean Median

AQ;, 10,415.77 8,022.41
Vi 170,280.24 142,557.00
Cix 22.65 22.75
AGEi,t-l 46.90 46.00
TLis 170,890.85 120,000.00
NWi. 450,020.65 337,062.40
CLis 62,650.95 32,259.41
| 99,579.27 80,464.00
7,103.65 1,385.89
o 5,001.21 -287.35
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Table 5.3. Expected changes in investment and elasticities

Expected change Elasticity

at the at the at the at the
Variable mean median mean median
Change in output (AQ;) 0.039 0.037 0.081 -1.025
Value of short-term assets (Vi) 0.038 0.039 1.284 -19.280
Cost of capital (C;y) 0.058 0.075 2627 -59.412
Lagged operator age (AGE,;.1) -0.034 -0.029 -3.207 46.223
Lagged total liabilities (TL;.1) 0.002 0.001 0.058 -0.463
Lagged net worth (NWi,.;) 0.007 0.009 0.630 -10.443
Lagged current Liabilities (CLi..;) 0.007 0.009 0.088  -0.966
Lagged machinery value (Ki.i) -0.050 -0.061 -0996 17.102
Lagged investment (I";,.1) -0.051 -0.075 -0.072 0.362

elasticities. For both the mean and median, the cost of capital has the largest absolute
impact on the expected value of investment. The positive impact indicates that as the cost of
investment rises, the level of investiment also rises. This is the opposite of what was
expected; however, if we set all nonsignificant parameter estimates to zero, then the impact
of the cost of capital on investment is zero at the mean and slightly above zero at the median.
Lagged machinery investment and machinery value have the next largest impacts, as we see
a five cent reduction in current investment for each dollar of lagged investment and
machinery value. For each dollar change in output or held in short-term assets, investment
increases by nearly four cents. As operator age rises by a year, investment decreases by just
over three cents. The three financial variables (net worth and the liability variables) have a
minimal absolute impact on investment.

The magnitude of elasticities provides evidence of the relative responsiveness of
investment to the regressors. At the mean values, operator age has the largest elasticity,

followed by cost of capital, the value of short-term assets, lagged machinery value, and net
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worth. The pattern is nearly the same at the median values, with all elasticity figures
increasing in absolute value.

These classical mixed model results are useful as a comparison for the Bayesian
results shown later. In one of the Bayesian simulations, we leave the outlier detection
component out of the model. This simulation is the most closely aligned to the model above.

The other Bayesian simulations extend the model from this point.

5.2 Bayesian Simulation with Variable Selection but no Qutlier Detection

For the simulation with variable selection but no outlier detection, we simply remove
the outlier detection component from our model and Gibbs sampler. This effectively sets the
outlier hyperparameter (1) and the outlier indicators (6;;) equal to one. As stated in Section
4.6, the simulations consists of four chains of 12,000 loops, for a total of 48,000 iterations.
For the variable selection component, the prior probability for including each of the variables
is set at 0.9, implying a 90 percent prior belief that each of the variables belongs in the
model. The exceptions to this are for the intercept and the random effects which are always
included in the model. Table 5.4 contains the summary statistics for the simulations. The
mean values, the sample quantiles, and Gelman and Rubin’s R-statistics are computed from
the last halves of the chains. The percentage of times the variables are chosen for the model

includes information from all 48,000 iterations.
Since w/ﬁ is below 1.03 for all of the quantities of interest, we assume that the

chains have converged to their stationary distributions. The variables that were selected for

the model over eighty percent of the time are the quadratic effect for the lagged investment
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Table 5.4. Summary of the results for the no outlier case

Posterior Posterior quantiles % of times

Variable Mean  25%  50%  975% VR  chosen
Intercept 0.622 -0373 0.642 1.544 1.02  100.00
AQi; 0.030 0.009  0.030 0.049 1.00  97.89
Vir : 0.039 0.022  0.038 0.060 101  99.99
it 0.109 0.000 0.116 0.259 1.00 8045
AGEi, -0.021 -0.033 -0.020  -0.009 1.00  99.11
TLis1 0.000 0.000  0.000 0.002 1.00 4.50
NWi,. 0.001 0.000  0.000 0.007 1.00  14.54
CLiz 0.000 -0.002  0.000 0.007 1.00 7.83
Kz -0.050 -0.073 -0.050  -0.023 1.00  98.79
| -0.015 -0.090  0.000 0.007 1.00 38.15
AQ;2 0.000 0.000  0.000 0.000 1.00 0.33
Vil -0.000 -0.000  0.000 0.000 1.01 11.22
i -0.024 -0.085 -0.012  0.000 1.00  54.87
AGE;,.,* 0.000 0.000  0.000 0.000 1.00 0.34
TLiot 0.000 0.000  0.000 0.000 1.00 0.10
NW,.,2 0.000 0.000  0.000 0.000 1.00 0.10
CLiu? 0.000 0.000  0.000 0.000 1.00 0.76
K’ -0.000 -0.002  0.000 0.000 1.02 4.00
| 0.015 0.000 0.016 0.024 100 93.01
AQi*Viy -0.000 0.000  0.000 0.000 1.00 1.59
AQ;*Cy, 0.000 0.000  0.000 0.004 1.00 5.43
AQi*AGE;,; -0.000 0.000  0.000 0.000 1.00 2.18
AQ;i*TLis 0.000 0.000  0.000 0.000 1.00 0.75
AQi*NW;,,  0.000 0.000  0.000 0.000 1.00 0.15
AQi*CLi;.  -0.000 -0.001  0.000 0.000 1.00 5.00
AQi,*Kix 0.000 0.000  0.000 0.000 1.02 1.25
AQi*TNio 0.000 0.000  0.000 0.003 1.00 4.91
Vi*Cy, 0.000 0.000  0.000 0.006 1.00 8.52
Vi *AGE;,. 0.000 0.000  0.000 0.000 1.00 0.54
Vie*TLix 0.000 0.000  0.000 0.000 1.00 0.44
Vi *NWi,, -0.000 -0.000  0.000 0.000 101 2263
Vie*CLiz1 -0.000 -0.000  0.000 0.000 1.01 3.46
Vie* Kz 0.000 0.000  0.000 0.000 1.00 0.97
Vi Vit 0.000 0.000  0.000 0.005 1.00 8.95
C.*AGE;;.,  -0.000 -0.000  0.000 0.000 1.00 3.19
Cii*TLis -0.000 -0.003  0.000 0.000 1.00 4.81
Ci*NWi 0.000 0.000  0.000 0.001 1.01 3.06
Cit*CLi1 -0.000 -0.007  0.000 0.000 1.00 7.96
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Table 5.4. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% \/E chosen
Ci*Kir1 -0.011 -0.023 -0.012 0.000 1.00 77.85
Cir* N 0.003 -0.001  0.000  0.032 1.00  19.45

AGE,.*TL,, -0.000 -0.001 0.000 0000  1.00 5.18
AGE;, *NW;., 0.000 0.000 0000 0.000 1.00 0.18
AGE;,*CLi,;  -0.000 0.000 0.000 0000  1.00 1.24

AGE; .. *Ki 1 -0.000 -0.003  0.000 0.000 1.00 19.62
AGE . *IN;. 0.000 0.000  0.000 0.000 1.00 2.48
TLi *NWi,y  -0.000 -0.000  0.000 0.000 1.00 3.31
TLiz*CLig 0.000 0.000  0.000 0.000 1.00 0.24
TLi1*Kiz1 -0.000 0.000  0.000 0.000 1.00 1.07
TLipt*INi 0.000 0.000 0.000  0.003 1.00 9.51
NW;..*CLi;.,  -0.000 -0.001  0.000 0.000 1.00 21.33
NWi 1 *Ki 0.000 0.000  0.000 0.000 1.00 0.26
NWi 4T -0.000 0.000  0.000 0.000 1.00 1.39
CLiz1*Kisi 0.000 0.000  0.000 0.000 1.00 1.14
CLip * 1N 0.003 0.000  0.000 0.010 1.00  45.88
Kip i *Nies 0.003 0.000  0.000 0.014 1.00 30.09
Parameter

o 4.912 4591  4.908 5.251 1.00

G, 0.498 0266  0.465  0.928 1.00

level and the linear effects for the change in output, the value of short-term assets, the cost
of capital, lagged operator age, and lagged machinery value. This list differs from the list of
variables with statistically significant parameter values from the classical mixed model.
While the classical model indicated seven of the cross effects had a significant impact on
investment, no cross effects were chosen by the variable selection procedure employed here.
To examine the differences between the classical mixed model results and the results
given in Table 5.4, let us look at the fifteen variables that either had significant parameter
values from the classical mixed model or had an eighty percent inclusion rate in the Bayesian

model. For ten of those fifteen variables, the classical mixed model parameter estimate fell



69

within the 95 percent sample quantile range from the Bayesian results. In four of these
cases, the variable was chosen by the Bayesian model less than one-quarter of the time. This
means that over 75 percent of the sample for that parameter is set at zero and the sample
quantile range is likely to be very small. Lagged operator age is the only variable that was
selected a vast majority of times (99.11 percent), but whose classical mixed model parameter
estimate did not fall with the sample quantile range.

For the variance parameter estimates, both the error variance and the random effects
variance estimates from the classical mixed model fall within the sample quantile ranges.
The mean estimate for the error variance is greater than that from the classical mixed model,
4.91 versus 4.78. The mean estimate for the random effects variance from this procedure is
greater than the estimate from the classical mixed model, 0.50 versus 0.29. Given the
informative prior for the random effects variance and the small size of the time series in the
panel data set, the draws for the random effects variance show significant influence from the
prior distribution.

The classical mixed model results indicated that four of the five variables inserted to
cover the 5 Cs of the farmer credit situation had a significant impact on the farmer’s
investment decision. The Bayesian model with no outliers only supports the inclusion of
lagged operator age and the value of short-term assets. The significant effects from the
classical mixed model that included net worth and/or current Liabilities were selected less
than half of the time.

To provide more detail on the movement of the chains through the parameter space,

we have graphed the chains for the parameters that were selected at least eighty percent of
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the time and for the variance parameters. Figures S.1 through 5.8 display these graphs. The
graphs show that, at least for these variables, the behavior of the chains converged at a rapid
rate. During most of the Bayesian simulations in this study, the intercept and the random
effect variables were the last to converge. Figures 5.9 and 5.10 show chain behavior for
variables that were selected less often. In Figure 5.9, the chain bebavior for the parameter
for the cross effect CLi,.,*I";,., is displayed. This effect was chosen in nearly 46 percent of
the trials. The cross effect AQ;;*NW,,.; was chosen less than one percent of the time. The
chain behavior for its parameter is shown in Figure 5.10. These graphs show the impact of
not being chosen for the model through the solid mass at zero. Overall, the ten figures show

that the chains moved quickly to the target stationary distributions.
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Figure 5.1. Graph of the chains for B, the parameter for AQ;,;
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Figure 5.2. Graph of the chains for 8,, the parameter for Vi,
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Figure 5.3. Graph of the chains for 85, the parameter for C;;,
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Figure 5.4. Graph of the chains for B4, the parameter for AGE;,.,
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Figure 5.5. Graph of the chains for Bs, the parameter for K.,
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Figure 5.6. Graph of the chains for Bis, the parameter for I'; ..,
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Figure 5.7. Graph of the chains for c.>, the error variance parameter
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Figure 5.8. Graph of the chains for o,%, the random effects variance parameter
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Figure 5.9. Graph of the chains for Bs3, the parameter for CL;,..*I"; .,
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Figure 5.10. Graph of the chains for B,3, the parameter for AQ;;*NW;,,

5.3 Bayesian Simulation with Variable Selection and Outlier Detection

The only changes to the model for this section from the model for the previous
section is the addition of the outlier detection component and the change in the prior
probability values for the variable selection component. We have set the prior probabilities
for variable inclusion at 0.5 and the priors for the outlier detection component indicate that
ten percent of the observations are outliers. We use this scenario as our “base” scenario for
the Bayesian estimations with both the variable selection and outlier detection. In the next
section, we vary these prior settings and compare the results to those in the present section.

The estimation consists of four chains with 12,000 loops, for a total of 48,000

iterations. The summary statistics for the estimation are given in Table 5.5. As with the no
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outlier scenario, the mean parameter values, sample quantiles, and the R-statistics are
computed from the later halves of the chains and the variable inclusion percentages count all
iterations. This same format is employed in summarizing all of the Bayesian estimation
scenarios.

Withw/ﬁ below 1.2 for almost all of the parameters, the model is considered
converged. The exception is the parameter for Kie1*IN; 1, which was selected for the model
less than two percent of the time; thus, we chose not to extend the chain length and re-
estimate. The variable selection component chose four of the fifty-four variables over eighty
percent of the iterations. These variables are the change in output, the value of short-term
assets, lagged machinery value, and the square of lagged investment. The outlier detection
hyperparameter () reached an average value of 0.74, indicating a posterior proportion of
0.74 that an observation is not a potential outlier. The error and random effects variance
average estimates are 0.922 and 0.470, respectively. The error variance estimate is much
smaller for this formulation due to the outlier detection component and the variance inflation
parameter, x. The classical mixed model and the no outlier Bayesian formulation have to
accommodate any outliers by increasing the size of the error variance estimate.

The average parameter values for the four selected variables indicate that machinery
investment rises with increases in changes in output, short-term asset value, and the square of
lagged investment and declines with increases in lagged machinery value. These relationships
are the same indicated through the Bayesian no outlier scenario and the classical mixed model

results.
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Table 5.5. Summary of the results for the full model

Posterior Posterior quantiles % of times

Variable Mean 2.5% 50%  97.5% VR chosen
Intercept -0.251 -1.166 -0246 0671 1.08  100.00
AQ;, 0.023 0.000 0.024  0.043 1.00 8833
Vi, 0.017 0.010 0017  0.025 1.00  99.59
Ci, 0.007 0.000 0.000  0.089 1.01 13.70
AGE;, -0.004 -0.013  0.000  0.000 1.00 4781
TLis 0.000 0.000 0.000  0.000 1.00 0.28
NWi 0.000 0.000 0.000  0.000 1.00 0.19
CLi 0.000 0.000 0.000  0.000 1.01 0.50
Kis -0.060 -0.073 -0.060 -0.046 1.00  99.99
M -0.040 -0.091 -0.047 0.000 1.00  69.05
AQ;2 0.000 0.000 0.000  0.000 1.00 0.09
Vil 0.000 0.000  0.000 0.000 1.00 0.46

o -0.000 0.000 0.000  0.000 1.01 2.39
AGE, ., 0.000 0.000 0.000  0.000 1.00 0.04
TLixt 0.000 0.000 0.000  0.000 1.00 0.02
NW;..2 0.000 0.000 0.000  0.000 1.00 0.01
CList? 0.000 0.000 0.000  0.000 1.00 0.10
Kigt? 0.000 0.000 0.000  0.000 1.00 0.04
N 0.020 0011 0.020  0.026 1.04  97.70
AQi*Vi, 0.000 0.000 0.000  0.000 1.00 0.13
AQ;*Ci, 0.000 0.000 0.000  0.000 1.01 0.28
AQi*AGE;., 0.000 0.000 0.000  0.000 1.00 0.06
AQ*TL;,;  -0.000 -0.001  0.000  0.000 1.00  27.09
AQi*NW,.;  0.000 0.000 0.000  0.000 1.00 0.03
AQ;*CLi;.,  -0.000 -0.001  0.000  0.000 1.02 12.79
AQi*Ks -0.000 0.000 0.000  0.000 1.01 1.71
AQ *T . 0.000 0.000 0.000  0.000 1.03 0.33
Vi *Cyy 0.000 0.000 0.000  0.000 1.00 0.23
Vi *AGE;,.;,  0.000 0.000 0.000  0.000 1.00 0.04
Vir*TLip 0.000 0.000 0.000  0.000 1.00 0.05
Vi *NWi. 0.000 0.000 0.000  0.000 1.00 1.07
Vi*CLig 0.000 0.000 0.000  0.000 1.00 0.38
Vir* Ko 0.000 0.000 0.000  0.000 1.00 0.09
Vi* L 0.000 0.000  0.000 0.000 1.04 0.27
Ci*AGE;,. 0.000 0.000 0.000  0.000 1.00 0.20
Ci*TLis -0.000 -0.002 0000  0.000 1.00 3.63
Ci*NWi, 0.000 0.000 0.000  0.000 1.00 0.07
Cis*CLiy -0.000 0.000 0.000  0.000 1.00 1.99
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Table 5.5. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% \/i chosen
Cii*Kis -0.002 -0.012 0.000 0.000 1.00 21.28
Cie*Vir -0.000 0.000 0.000 0.000 1.00 2.54

AGE.*TLi.;  0.000 0.000 0000 0.000 100  0.03
AGE . /*NW,,, 0.000 0.000 0000 0000 100  0.02
AGEi..*CLi,;  0.000 0.000 0000 0.000 100  0.08
AGE./*K;.q  0.000 0.000 0000 0.000 100 0.1
AGE . *I"i  0.000 0.000 0000 0.000 100 0.71
TLio*NWiq,  0.000 0.000 0000 0.000 100  0.05

TLiz1*CLiyt 0.000 0.000 0.000  0.000 1.00 0.03
TLix1*Kier 0.000 0.000  0.000 0.000 1.00 0.05
TLigt*Tiga 0.000 0.000 0000  0.000 1.00 0.10
NWi1*CLits 0.000 0.000 0.000  0.000 1.00 0.15
NWie1*Kit 0.000 0.000  0.000 0.000 1.00 0.01
NWi N 0.000 0.000  0.000 0.000 1.00 0.08
CLit1*Kist 0.000 0.000 0.000  0.000 1.00 0.09
CLizt*INi 0.000 0.000 0.000  0.000 110 205
Kisi*iga 0.000 0.000 0.000  0.000 1.28 1.49
Parameter

n 0.740 0.702 0.740  0.777 1.00

o 0.922 0.815 0.920 1.040 1.00

o, 0.470 0.251  0.438 0.876 1.01

In comparing the results from this estimation and the no outlier scenario, we see that
the four variables selected here were also selected in the no outlier scenario. The average
parameter values for these variables are of the same sign and magnitude. The greatest
difference between the two estimates is in the parameter for the value of short-term assets;
the mean estimate from the no outlier case is twice the size of the mean estimate from the
present case. Two other variables were chosen in the no outlier scenario but not selected
here, the cost of capital and lagged operator age. The random effects variance estimates are

very similar. The error variance estimates are quite different as would be expected from the
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addition of the outlier detection component. The error variance mean estimate from the no
outlier scenario is five times the mean estimate produced in this formulation.

Table 5.6 shows the breakdown of the percentages of outlier detection for this
estimation. Of the 1770 observations, 805 (45.5 percent) were not selected as outliers over
90 percent of the iterations. 1378 observations (77.9 percent) were not selected as outliers
over 70 percent of the time, but 207 observations (11.7 percent) were selected as outliers
over 90 percent of the time.

Table 5.6. Outlier detection percentages
Percentage range  Number of observations

0- 10 805
10- 20 470
20- 30 103
30- 40 50
40- 50 36
50- 60 29
60- 70 21
70- 80 28
80- 90 21
90 - 100 207

Figures 5.11-5.17 show the chain paths for the parameters of the four selected
variables, the variance components, and the outlier detection hyperparameter. As with the no
outlier scenario, we can see that the chains “converge” rather quickly. The first six of these
figures have counterparts from the no outlier scenario and, for the most part, they have very
similar features. The differences can be attributed to differences in the proportion of selection
and the mean level of parameter estimates. For example, between Figures 5.2 and 5.12, the

graphs of the chains for the parameter of short-term assets, Vj,, the only noticeable difference
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Figure 5.11. Graph of the chains for B, the parameter for AQ;,
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Figure 5.12. Graph of the chains for 3,, the parameter for Vi,
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Figure 5.13. Graph of the chains for B3, the parameter for K;;.
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Figure 5.14. Graph of the chains for i3, the parameter for I,
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Figure 5.15. Graph of the chains for c.%, the error variance parameter
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Figure 5.16. Graph of the chains for o,’, the random effects variance parameter
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Figure 5.17. Graph of the chains for 1, the outlier detection hyperparameter

is the average value of the chain paths. The only truly new figure is Figure 5.17, the graph of
the outlier detection hyperparameter chains. The chains settle quickly between 0.65 and 0.8,

implying that the percentage of outliers in the data set is between 20 and 35 percent.

5.4 Sensitivity to the Prior Distributions

To test the impacts of the priors for the variable selection and outlier detection
components, we formulated the model under eight other prior specifications. The priors
combined three settings each for the variable selection and outlier detection components.
Table 5.7 shows the prior combinations and provides the names with which we will refer to

each Bayesian estimation. The variable selection prior refers to the prior probability that the



Table 5.7. The various prior specifications

Variable QOutlier Detection

Selection 0.0 0.1 0.5 0.9
0.1 VarlOutl VarlOut5 VarlOut9
0.5 Main Var50ut5 Var50ut9
0.9 NoOut Var9Outl Var9Out5 Var90ut9

variables are included in the model. The outlier detection pricr refers to the setting of the
outlier detection hyperparameters and the prior proportion of outliers they indicate.

The names were chosen to be descriptive of the prior settings. The Bayesian
estimation labeled Main is the one described in the previous section and is the base for
comparison for the rest of the estimations. We will also refer to the no outlier Bayesian
estimation; we have labeled it NoQOut.

As with the other Bayesian estimations, the Gibbs sampler is run over four chains of

12,000 loops each for a total of 48,000 iterations. The behavior of the chains was monitored
with Gelman and Rubin’s R-statistic, VR . For all of the variables selected for the model in at

least three percent of the iterations, VR is less than 1.15 in all of the estimations, so
convergence is assumed.

A summary table for each of the Bayesian estimations is provided in Appendix 2, but
to quickly summarize the resuits of the estimations and to allow easier comparison between
them, we have constructed a composite summary table, Table 5.8. It lists, for each
specification, the variables selected at least eighty percent of the iterations, the mean values of
their parameters, the mean values of the variance components and outlier detection

hyperparameter, and the histogram of outlier detection.



Table 5.8. Composite summary table
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Bayesian estimation

Varl Varl Varl Var5 Var5 Va9 Va9 Va9 No

Outl Out5 Out9 Main Out5 Out9 Outl Out5 Out9 Out
Variable Posterior mean parameter value
AQi; 0.023 0.025 0.025 0.028 0.028 0.029 0.030
\'A 0.017 0.017 0.018 0017 0.017 0.018 0.017 0.017 0.017 0.039
Cis 0.109
AGE;,, -0.007 -0.007 -0.007 -0.021
Kig -0.061 -0.060 -0.061 -0.060 -0.060 -0.060 -0.058 -0.059 -0.059 -0.050
| -0.054 -0.054 -0.055
Mt 0.017 0.016 0.015 0.020 0.019 0.019 0.020 0.020 0.020 0.015
Parameter
o 0940 0.921 0.879 0.922 0.906 0.866 0.919 0905 0.863 4912
o’ 0.458 0469 0455 0470 0.458 0465 0.461 0478 0.476 0.498
n 0.741 0.732 0.709 0.740 0.732 0.708 0.742 0.734 0.710
Outlier %" Number of observations
0- 10 807 734 399 805 730 412 818 756 451
10- 20 464 527 816 470 534 804 462 512 770
20- 30 103 105 122 103 104 120 108 115 126
30- 40 49 47 60 50 49 64 38 40 58
40- 50 45 48 42 36 39 36 34 34 35
50- 60 23 30 32 29 29 32 33 33 29
60- 70 24 20 23 21 22 32 21 21 27
70- 80 25 22 28 28 29 23 30 28 29
80- 90 29 34 34 21 25 32 21 22 31
90 - 100 201 203 214 207 209 215 205 209 214

“If there is no value in a cell, either the variable was not selected eighty percent of the time or
the parameter was not estimated in that scenario.
““The percentage of times the observation was chosen as an outlier.

Several definite patterns can be seen in the table. When we examine the subset of

variables selected in all of the Bayesian estimations with both variable selection and outlier

detection, the posterior mean parameter estimates are very similar. Given a variable selection

prior probability, the estimation procedure selects the same set of variables regardless of the
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prior chosen for the proportion of outliers. Given a variable inclusion prior of ten percent,
the estimation method chose the value of short-term assets, lagged machinery value, and
squared lagged investment. Raising the variable inclusion prior to fifty percent added change
in output to this list. When the prior is at ninety percent, lagged operator age and lagged
investment also are selected in at least eighty percent of the model draws. The variance and
outlier hyperparameter estimates are also consistent across the estimations.

A similar pattern emerges from the outlier detection results. Selected variables are
estimated to have approximately the same values given a prior value for the outlier detection
component, regardless of the prior chosen for variable inclusion. Given a prior for the
proportion of outliers of ninety percent, the posterior probability for the proportion of
outliers is 71 percent. This posterior probability does not change noticeably even when we
change the prior proportion of outliers from 10 percent to 90 percent. As we lower the prior
probability of outliers, the outlier hyperparameter indicates a slightly smaller percentage of
outliers and the largest group on the outlier percentage scale has a zero to ten percent
probability of being an outlier.

Given these results, we can state that the choice of priors for the variable selection
and outlier detection components have a negligible effect on the results from the Bayesian
analysis. However, the addition of an outlier detection component has several impacts on the
results, when compared to the no outlier scenario. For these comparisons, we concentrate on
the Bayesian results with the ninety percent prior probability for variable inclusion since the
no outlier scenario was also run using that prior. The no outlier case excluded lagged

investment in favor of cost of capital. The posterior means for value of short-term assets and
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lagged operator age more than doubled under the no outlier scenario. The posterior mean of
the error variance is five times greater under the no outlier case versus the scenarios including
outliers. This is to be expected, because the error variance must be large enough to
accommodate all the outliers that are not classified as such. Even with these differences, the
no outlier and outlier detection scenarios held several similarities. The posterior mean for
change in output is nearly identical in both cases. The point estimates for the parameters
associated with lagged machinery value and the square of lagged investment are contained
within the posterior quantile ranges (2.5 to 97.5 percent) for the opposite case. The posterior

means of the random effects variance are quite similar.

5.5 Bayesian Elasticity Estimates

We estimated the marginal posterior distributions of the expected change in
. . . .. [oyx
investment related to a one unit change in each regressor and of the elasticity a; for each

regressor, to examine the absolute and relative impacts of the factors on farm machinery
investment. As before, we compute the posterior distributions of these measures at both the
mean and median values for all variables because of the skewness in the investment data. The
MCMC approach allows us to approximate the marginal posterior distributions of unit
changes and elasticities since the latter portions of the chains can be thought of as coming
from the posterior distributions of interest. As we mentioned in Section 3.1, the MCMC
approach provides a simple mechanism for approximating posterior distributions of any

measurable function of the model parameters. Expected changes and elasticities are functions
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of the parameters of our model. Within the Bayesian framework, we then obtain point
estimates and credible intervals (the Bayesian equivalent to frequentist confidence intervais)
for the expected changes and elasticities. This approach also allows us to incorporate the
uncertainty about all model parameters directly into the expected change and elasticity
estimates. From the parameter draws from the Gibbs sampler for the Main case (which had
prior expectations of 50 percent for the variable inclusion component and of 10 percent for
the outlier detection component), we computed marginal posterior distributions of the
elasticity measures summarized in Table 5.9. Again, since current investment is positive at
the mean and negative at the median, the elasticity measures change signs.

The table shows the posterior means, selected posterior quantiles, Gelman and
Rubin’s R-statistics, and the percentage of times the estimate is non-zero (out of 48,000
iterations). We see that at the mean values lagged machinery value has the largest relative
impact followed by the value of short-term assets, lagged operator age, and the cost of
capital. The financial variables representing the 5 Cs of lending, lagged net worth, total
liabilities, and current lLiabilities, have a negligible impact. Non-zero estimates for these
elasticities only occur less than 0.5 percent of the time. At the median values, the order is
nearly the same but with the cost of capital becoming more influential.

Given the posterior means of the elasticities, we calculated the expected changes in
investment given in Table 5.10. At the mean values, lagged machinery value has the largest
absolute impact on investment, followed by lagged investment, changes in output, and the
value of short-term assets. At the median values, only lagged machinery value and lagged

investment change places. At both levels, the lagged financial variables have again negligible
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Table 5.9. Summary of the elasticity results for Main

Posterior Posterior quantiles % of times
Variable Mean  25%  50% 975% VR  non-zero
at the mean
AQi; 0.048 0.000 0.050 0.089 1.00 88.33
Vis 0.585 0.332 0.583 0.855 1.00 99.59
Ci: 0.333 0.000 0.000 4.027 1.01 13.70
AGE;;.1 -0.406 -1.256 0.000 0.000 1.00 47.81
TLiga 0.000 0.000 0.000 0.000 1.00 0.28
NWiz -0.000 0.000 0.000 0.000 1.03 0.19
CLit1 0.000 0.000 0.000 0.000 1.01 0.50
Kie1 -1.189 -1.450 -1.191 -0.921 1.00 99.99
| i -0.057 -0.129 -0.067 0.000 1.00 69.05
at the median
AQ;: -0.694 -1.328 -0.692 -0.000 1.00 88.41
Vi -8.543 -12.553 -8.501 -4.842 1.00 99.59
Ci: 9.351 -74519 -0.000 -0.000 1.01 40.12
AGE;;., 6.954 -0.000 -0.000 21.451 1.00 48.55
TLiz -0.019 -0.112 -0.000 0.101 1.00 30.87
NWi. -0.005 -0.000 -0.000 -0.000 1.01 1.58
CLis 0.004 -0.041 -0.000 0.085 1.04 17.39
Kiz 16.778 12990 16.790 20.445 1.00 99.99
ﬁﬂ 0.305 0.065 0.342 0.561 1.00 98.97

Table 5.10. Expected changes in investment

Variable at mean values at median values
Change in output (AQ;,) 0.023 0.025
Value of short-term assets (Vi) 0.017 0.017
Cost of capital (Ci;) 0.007 0.012
Lagged operator age (AGE;;.1) -0.004 -0.004
Lagged total liabilities (TLi.1) 0.000 0.000
Lagged net worth (NWi,.;) -0.000 0.000
Lagged current Liabilities (CLi¢.1) 0.000 -0.000
Lagged machinery value (Ki:-1) -0.060 -0.060

Lagged investment (I"i;1) -0.040 -0.063
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influence. Lagged operator age, machinery value, and investment have a negative
relationship with current investment, where the change in output, the value of short-term
assets, and the cost of capital have a positive relationship with investment.

When we compare these figures with the elasticity and expected change estimates
from the classical mixed model approach (Table 5.3), we see several important differences.
The classical estimates supported stronger relationships between current machinery
investment and the cost of capital or lagged operator age. Lagged machinery value had the
third or fourth largest effects under the classical estimates, as opposed the largest effects
under the Bayesian estimates. Although the signs of the measures are mostly in agreement,
the magnitudes of the measures under the two approaches differ significantly, especially the

elasticity measures.

5.6 Posterior Predictive Model Checking
One method to evaluate the fit of the model from a Bayesian perspective is to
compare the observed data to data generated from the model’s posterior predictive

distribution. The posterior predictive distribution is defined as

p(y™ly) = fp(y=18)p(0ly)ee

where y™ represents data replicated using the fitted model, y represents the observed data,
and O represents the parameters of the model. It is a posterior distribution since it depends
on the observed data and is a predictive distribution since it can generate predictions for

possible observations y™. The basic idea behind posterior predictive analysis is to compare

the observed data with replicate data generated by the model. Test quantities, such as test
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statistics, are defined to measure discrepancies between the model and observed data. A
posterior predictive p-value is defined as the probability that the test quantity for the observed
data is less than the test quantity for replicated data.

Under the framework used in our analysis, replicate data are easy to produce. We
compute the posterior predictive distribution through simulation, employing the last 450
draws from each of the four Gibbs sanipler chains from the estimation labeled Main. From
each of the draws from the posterior distribution of the parameters, we form a hypothetical
investment data set by drawing from

Y| ¥o B, Xiw %, 057, 61 ~ N(e + X, 0°(01; + & ~ 6,)).
The 1800 replicate data sets summarize the posterior predictive distribution. For the test
quantities, we have chosen standard test statistics: the mean, standard deviation, minimum,
median, maximum, and the skewness coefficient. The estimated p-values are the proportions
of times that the replicate test statistic values exceed the test statistic value obtained from the
observed data. Extreme p-values can indicate deficiencies in the model and suggest areas for
model improvements.

Figures 5.18-5.23 display the histograms of the test statistic values from the 1800
replicate data sets along with the test statistic value from the observed data. The histograms
approximate the posterior predictive distributions for each of the test quantities. The actual
test quantity values from the observed data and the posterior predictive p-values are also
given in the figures. For the mean and the skewness coefficient, the posterior predictive p-

value is zero, indicating that the actual value falls outside of the range of values from the



92

120 - Actual = 5001 _,
100 — p-value = 0.00
5 80 —
3 _
E 60
& 40 -
20 —
O : ' e ! \
2 5828878 28 =8 8
Mean Value

Figure 5.18. Posterior predictive check of the mean
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Figure 5.19. Posterior predictive check of the standard deviation

replicate data sets. For the standard deviation and maximum value, the actual value is rarely
exceeded by values from the replicate data sets; thus, the posterior predictive p-values are
small. For the minimum and median values, the actual value falls well within the range

obtained from the replicate data sets.
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Figure 5.20. Posterior predictive check of the minimum value

160 —
140 — Actual = -287
p-value = 0.69
>’120--
§ 100 —
qg; 80 —
& 60 -
40_._
20 -
0 —— . ’,
SRR EEEEEEE
50% Quantile

Figure 5.21. Posterior predictive check of the median

These results indicate that the model captures certain aspects (minimum and median
values) of the investment data well; but other aspects (mean and maximum values) of the data
are inconsistent with the model. The analysis of the skewness coefficient shows that the

replicate data sets tended to be symmetric, while the actual data set is skewed. These tests
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Figure 5.22. Posterior predictive check of the maximum value
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Figure 5.23. Posterior predictive check of the skewness coefficient

indicate that the model might be improved by departing from the normality assumption on the
residuals.
One factor that is not included in the investment analysis is farm acreage. To see if

farm acreage might add information to the model, we have also examined the correlation
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between the residuals from the model (based on the 1800 replicate data sets) and the number
of acres farmed. Figure 5.24 summarizes the posterior distribution of the correlations. A
correlation near zero would imply that farm acreage would add very little new information to
the model. However, a non-zero correlation would imply that farm acreage would
substantially add to the model. The figure shows very few observations in the vicinity of
zero, indicating farm acreage would add information to the model. But the sign of the
correlation is indeterminate since the distribution has two distinct pieces. Much of the weight
of the posterior distribution is placed in two intervals, (-0.09 to -0.07) and (0.03 to 0.08).
Thus, this model check indicates that farm acreage should be included in the next version of
the model, but the test does not reveal the direction of the impact farm acreage will have on

the model.
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Figure 5.24. Posterior predictive check of the correlation between farm acres and residuals
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CHAPTER 6. THE EULER EQUATION APPROACH

6.1 The Euler Equation Approach

The Euler equation approach we take follows Hubbard and Kashyap (1992). To
simplify notation, the firm subscript (i) is removed from the following equations. We assume
that farmers seek to maximize the present discounted value of investment net cash flows.
Assuming all farms face the same prices, farm machinery is the only quasi-fixed input, and
machinery is homogeneous, investment net cash flow is defined as

=, =p.F(K._;.L,;,.N.)-w, N, -L,.L,_, ~A(L,,K, ;) -i,B, +B, - B, —p"l,,

where F(.) represents the production function, A(.) represents the adjustment cost function,
7 is investment net cash flow, p is the output price, K is the capital stock, L represents land,
N is a vector of variable inputs, w is the vector of variable input prices, | is the rental price of
land, I represents investment, i is the interest rate, B is total debt, and p' is the price of
investment. Under this specification, it is assumed that this period’s machinery investment is
not put into use until the next period.'

The farmers face several constraints in performing this maximization. Capital
accumulation is defined as

Ki=(1-9)Ke: + 1,

where 3 is the depreciation rate of the capital stock. This period’s capital stock value is

equal to the sum of the depreciated value of last period’s capital stock and this period’s

! This delay in investment usefulness is often referred to as “time to build”. Our time to build is one year.
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investment. A transversality condition is assumed to hold so farmers cannot borrow an
infinite amount. A positive net cash flow constraint is also included, implying that farms
must borrow if cash flow is negative. Here, we present a simplified version of the model by
ignoring taxes and inflation, although these factors are taken into consideration when we
estimate the Euler equation model

To arrive at the estimation equation, it is necessary to form, from the objective
function and its constraints, the Lagrangian function

L=Eo[Z2(ITioBy Jm, + deme + 4 (1~ 8K, +1, -K,)]

where E; is the expectation operator conditional on information known at time t, By is a
discount rate, and ¢, and A, are the Lagrangian multipliers for the non-negative cash flow and
capital accumulation constraints, respectively. The Euler equations for the farmer’s choice
variables are derived. These Euler equations are combined to eliminate the Lagrangian
multiplier on the capital accumulation constraint (which represents the shadow value of
capital) to arrive at the estimation equation. The Euler equation for investment is given by

)
%:(lwt)[- Ay (L K)-ph]+2, =0.

The Euler equations for debt and the capital stock are

5
E‘f:(w ¢:)~EJ(1+ 0. )B.(1+i,)]=0 and

gaK—l,—: Et[(1+ ¢t+l)B! {pt-blFK, (Kt ’Lt7Nt+l) —Al(, (It+l,Kt)} +5t(1 - 8)2'!-0-1] - A't =0,
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respectively. The Euler equations for investment and debt are substituted into the capital

stock Euler equation, to create the estimation equation

Peifk, (KnLnNm) —Ag, (It+l’Kt) +(1 ‘8)[A1,_. (IH-I’Kt) + PIM]
~(1+i Ay (1K) + | = T
where n,-; is the expectation error. The expectations are evaluated at realized values and an
expectation error is added to the equation. Under the rational expectations assurnption, this
expectation error has a mean of zero (Ei[m:1] = 0) and is uncorrelated with any information
to which the farmer has access at the time of making the decision.

The first three terms in the equation above represent the marginal benefit of investing
this period. The first term is the (next period’s) marginal revenue from making the
investment in this period. The second term is the additional adjustment costs from investing
in this period. The third term is the marginal cost of investment in the next period. The last
two terms in the equation represent the marginal cost of investing during this period. The
fourth term is the marginal adjustment cost from an additional dollar of investment. The fifth
term is the price paid per unit of capital bought this period.

Estimation is performed to obtain values for the parameters in the production and
adjustment cost functions. For the production function, most studies of this kind have
followed the convention of the Q literature and have assumed that average and marginal
products of capital are equal. Marginal and average products of capital are equal when the
production function is homogeneous of degree one in machinery and variable inputs, no

quantity constraints exist in either the input or output markets, and farmers are price takers.
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This also implies perfect competition and constant returns to scale. The typical assumption
for the marginal value product of capital is given by

Y., -C
PmF - t+th t+l,

where Y, is gross revenue from production and C,., is variable cost.

Specifications for the adjustment cost function have also followed the Q literature.
Adjustment costs are taken to be linearly homogeneous in investment and capital, so as to
equate average and marginal Q. The Q model uses a quadratic cost function where costs are
mcurred when investment deviates from a given rate. Often the adjustment cost function is

given as

2
I
A(It’Kt—=)=O$0(K‘ —U) Kt—l’
t-1

where v represents an average or “normal” investment rate and 0, is an unknown parameter

to be estimated.

To allow for asymmetries in adjustment costs, we have specified the adjustment cost

I
function as a piecewise quadratic function with the breakpoint at K—'=Dwith91
t-1

I
representing adjustment costs when K—'— <vand 8, representing adjustment costs
t—-1

I
when—'—>v. The basic model we employ in the Euler analysis is the estimation equation

t-1

with the marginal value product of capital as depicted above and a standard symmetric
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adjustment cost function. We also estimate the parameters in the model using the

asymmetric adjustment cost specification described above.

6.2 Incorporation of Financial Constraints in the Euler Approach

Several studies have included a financial constraint to the Euler equation investment
model. The financial constraint is of the form B", > B,; the farmer is constrained to have
outstanding debt, B,, less than or equal to some debt ceiling, B",. Hubbard and Kashyap
(1992) suggest B, could be made a function of net worth. The financial constraint we
employ incorporates the “5 Cs™ of lending: character, capacity (cash flow), collateral, credit
rating, and capital (owner’s equity). The expanded Lagrangian function with the debt

constraint is given below:

L= EO[Z;l(m;loBk )“t + ¢tnt + A't((l - 8)Kt-l +It - Kl) + mt(B.! - Bt )]’
where o, is the Lagrangian multiplier for the debt constraint. Following the same procedure
as before, we arrive at the estimating equation for this variation of the model:

" “f"){Pt+'F k. (KoLoNey ) = A (LK) +(1 -5)[Ax..l (I K) + D' ]}
(1 +i )AL (6K ) + 24 )= s

where @ .
mt-1+¢t.

The parameter @, has been modeled in a variety of ways. Hubbard and Kashyap

(1992) assume it is a multiple of the change in net worth. Bierlen (1994) takes it as a

quadratic function of the level of net worth. Whited (1992) specifies® , as a quadratic



101

function of the firm’s debt to asset ratio and the ratio of the firm’s interest expenses to the
sum of the interest expenses and cash flow. Hubbard, Kashyap, and Whited (1995) model
® , as a function of the firm’s cash flow and an interest rate spread.

Due to its structure, @, must be non-negative. The specifications above may not
reflect this point. To capture this restriction, we form @ ,as an exponential function where
the power of the exponential will depend on the 5 Cs of lending. This model specification
adds to the existing literature by expanding the financial constraint specification.

Another approach to incorporate a financial constraint into the model is to model the
interest rate the farmer faces. In a paper examining scale economies in banks, Hughes and
Mester (1995) model loan interest rates as the product of a risk-free interest rate and a risk
premium. The risk premium is a function of the bank’s outputs, capitalization, and risk
structure. This same approach can be taken from the farmer’s point of view. The interest
rate the farmer faces is composed of a risk-free interest rate and a risk premium. This
approach (also referred to as an elastic credit supply approach) has been employed by Bond
and Meghir (1994), Estrada and Vallés (1995), and Barran and Peeters (1998). This risk
premium is likely to depend on the 5 Cs of lending. Higher risk premiums would translate
into higher loan interest rates which would effectively prohibit borrowing, thus constraining
the farmer’s investment choices.

The financial constraint would then take the form of an interest rate constraint, such
as iy =1y where i is the loan interest rate, i is the risk-free interest rate, and y, is the risk

premium (. > 1). This constraint can be directly inserted into the Lagrangian function. In
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order to meet the range restriction on y,, we model y, as one plus an exponential where the
power of the exponential will depend upon the 5 Cs of lending.

Both of these approaches to the financial constraint can be brought into one
specification, but previous attempts to do so have not succeeded. Convergence problems
have been encountered in employing the interest rate specification (Barran and Peeters
1998). Due to this difficulty and the limited time frame of the data set, we have chosen to
focus on the debt ceiling approach.

We have chosen to model @, as an exponential function of the 5 Cs. Here,

&, =exp[p, +P,AGE,, +p,V, +p;TL,, +p,NW,_, +p;CL,_, +ps(AGE )’
+ P7(Vx)2 + pS(TLt-l)z + Py (N‘Vq)2 + plo(CLt—l)zL

where AGE is the operator's age, V is the value of short-term assets, TL is the total farm
liability, NW is the net worth, CL is the short-term farm liability, and the ps are unknown
parameters to be estimated from the data. Character is proxied by the farmer's age.

Capacity is proxied by the value of short-term assets (feeder livestock, stored crops,
supplies, fertilizer, and cash). Net worth, total liabilities, and short-term Labilities (due
within one year) complete the equation. Both linear and quadratic terms are included in the
specification. Age, net worth, and both liability variables are lagged to represent the
financial state of the farm before the investment was undertaken. The concurrent value of
short-term assets is used to represent the farm's potential cash flow. To control for farm
size, all of the financial variables in the debt ceiling constraint are divided by the lagged value

of the capital stock.
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We have added fixed firm and time effects to the estimating equation. The firm
effects capture other firm characteristics not included in the model. The time effects capture
aggregate business cycle components common to all agents. The complete estimation
equation is given by
(1- 61 fPenFic (Koo L Niger )~ A (T Ko ) + (1= 8Y Ay (Lo Ko )+ P I

~(1+i, A, (Ii',,KL,_l )+t ] +£, Y, =T
where the fis are the firm effects and the y;s are the time effects. To account for the effects
of taxes and inflation, we modify the interest rate and the price of investment. The interest
rate is computed as i, = (1—7;;)i; — Y: where T;, is the marginal federal tax rate, i, is the
average effective interest rate on all non real estate agricultural loans reported by the Federal
Reserve, and . is the percent change in the Gross Domestic Product deflator reported by
the Bureau of Economic Analysis. The price of investment, p", is computed as (1-t;,z.)p" «
where z; is the present value of future depreciation deductions from investment at time t and

p" s the price index for farm machinery reported by the United States Department of

)
Agriculture. The variable z;, is calculated as —————, where & is the accrual equivalent

tax rate on capital gains. Following Whited (1992) and Bierlen (1994), & is set equal to

0.0s.
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6.3 Estimation Technique

The estimatior: technique employed in most of the Euler equation investment
literature is an instrumental variable generalized method of moments (IV-GMM) approach.
There are several reasons why this technique has been chosen. First, the [IV-GMM
technique incorporates the rational expectations assumption directly. Second, the technique
yields consistent parameter estimates if the instruments are uncorrelated with the stochastic
error. Third, the parameter estimates can be produced to be robust to heteroscedasticity and
serial correlation. Fourth, there are simultaneity problems within the model; IV-GMM can
handle such problems.

In method of moments estimation, sample moments are equated with population
moments and a solution is obtained for the population parameters. For example, given a
sample of independent draws from a distribution, we can equate any moment of the
distribution to the corresponding sample moment. For the population mean, the method of
moments estimator is the sample mean. Generalized method of moments (GMM) estimation
extends the ordinary method of moments technique by utilizing both conditional and
unconditional moments and by possibly having these moments depend on unknown
parameters (Davidson and MacKinnon, 1993).

The just identified” IV-GMM estimator is described below. Suppose we are given y.,

ann x 1 vector of dependent variables, and X, an n x k matrix of independent variables, and

? In the just identified case, the numbers of instruments is equal to the number of parameters. In the
overidentified case, the number of instruments exceeds the number of parameters.
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are attempting to estimate f, a k x 1 unknown parameter vector. Let u, = fi(y:, X, B)bea

function with an expectation of zero. The equations which define the GMM estimator for

1 1 -
this problem are given by EZLl f(@.X.8)= 5 =11, =0. The GMM estimator of 8, B,
mimics the moment restrictions by setting ﬁ to minimize the following quadratic form,

1 (1
L(B) = (; :’:,ﬂt) Wn(; L,ut),where W, is a positive semidefinite matrix with

lim W, = W, a positive definite matrix (Ogaki, 1993). If w, is serially uncorrelated, then

the optimal GMM estimator is reached with W = Q™' = (E[u.u,’])" (Hansen, 1982). In our
case, the function is the product of the instruments, Z, and the expectational error, 1.
Under rational expectations, the errors in the expectations of the economic agents should be
independent of all variables within their information sets, E[Zn] = 0. Thus, the product of
the instruments and errors can serve as both the embodiment of the rational expectations
assumption and the moment conditions needed to employ the IV-GMM approach.

Hansen (1982) examines the large sample properties of GMM estimators. He shows
that GMM estimators are strongly consistent and asymptotically normal given that the
observable variables are stationary and ergodic. Also, many econometric estimators, such as
ordinary least squares and instrumental variables approach, can be represented as special
cases of GMM estimators (Davidson and MacKinnon, 1993). Fixed firm and time effects
can be dealt with in an efficient manner in GMM estimation (Lahiri, 1993). Hansen and

Singleton (1982) represents the first application of IV-GMM to a rational expectations,
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Euler equation model. Since then, IV-GMM has become the technique of choice for these
types of models.

If the number of instruments used (q) in the [V-GMM approach exceeds the number
of parameters (k), then the system is labeled as overidentified. This indicates that the
number of moment conditions used to estimate the system exceeds what is required. A chi-
square test statistic can be employed to test these overidentifying conditions, using a test
often referred to as the Sargan or Hansen’s J-test. In his 1982 paper, Hansen showed that
the product of the number of observations and the minimized value of the GMM objective
function, nJ.,(ﬁ ). has an asymptotic y* distribution with q—k degrees of freedom when W =
Q'. When we examine variations of the model (ie., look at parameter restrictions), we test

these using a likelihood ratio type of test statistic, n(J,.([;r )—Jn(B )) where [3, is the GMM

estimator for the restricted version of the model and B is the GMM estimator for the
unrestricted version. Under a set of regularity conditions and the use of the same estimator
for Q in both the restricted and unrestricted versions of the model, this test statistic has an
asymptotic % distribution with s degrees of freedom where s is the number of restrictions.

The estimation is performed using the GMM procedure in TSP 4.2B. The data set is
the same as was used for the composite regression approach and is described in Section 4.1.
Following White (1980), the computed standard errors are consistent when disturbances are
heteroscedastic. Annual equations with cross-equation restrictions are estimated. Due tc
the presence of lagged dependent variables and fixed firm effects, the equations are first-

differenced to remove the fixed firm effects and all instruments are lagged one period. The
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instruments are operator age, the price of investment, the marginal value product of capital,
farm total Liability, net worth, farm short-term Lability, short-term assets, non-farm income,
tax expenses, and interest expenses. All financial instruments are divided by the value of the
capital stock to control for farm size. The parameter v is set at 0.135, the average
investment rate over the entire sample. The depreciation rate, 5, is set at 0.10, the same
figure the Jowa Farm Business Association employs. Since we include squared terms in the
financial constraint, we have removed the means of these variables to alleviate possible
multicollinearity.

During the estimations, we begin by estimating the parameters of the model under
four different specifications. We have labeled these specifications Models 1-4. Model 1 is
the basic Euler investment equation with symmetric adjustment costs. Model 2 extends this
basic model to have asymmetric adjustment costs. Model 3 adds the financial constraint to
the basic model. Model 4 adds the constraint to Model 2. We tested for farm effects and
found them to be significant; thus, we proceed to estimate the parameters of the models

including these effects.
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CHAPTER 7. EULER EQUATION RESULTS, EXTENSIONS, AND DISCUSSION

7.1 Euler Equation Results

The results for the investment equations in first-difference form are presented in
Table 7.1. The four specifications cover the interactions between symmetric and asymmetric
adjustment costs and the inclusion (exclusion) of the financial constraint. For statistical
significance, we use the five percent level for both the parameter estimates and the model
tests. The J-statistic tests labeled (O. R.) are the standard tests (often referred to as Sargan
or Hansen's J-tests) for GMM estimation. A p-value above 0.05 indicates the model is not
rejected. A p-value below 0.05 indicates evidence for rejecting the model. The tests labeled
(vs. M 1) and (vs. M 4) are comparing nested models. A p-value above 0.05 indicates the
more restrictive model is not rejected in favor of the less restrictive model. A p-value below
0.05 mdicates evidence for rejecting the more restrictive model in favor of the less restrictive
model.

In all four cases the model is rejected. But among these models, the restricted
specification with symmetric adjustment costs and no financial constraint (Model 1) is the
preferred model. In each case, the more sophisticated model is rejected for its more
restrictive counterpart. In three cases, adjustment costs are estimated to be negative, and
two of these are significantly different from zero. The addition of the financial constraint to
the model has an unique effect on the adjustment cost parameters. When the constraint is
added to the model, the adjustment cost parameter estimates are reduced by nearly a factor

of 100 and they reverse signs. In comparing these results to others in the field, we find
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Table 7.1. Parameter estimates for investment equations in first-difference form

Model 1: sym. Model 2: asym. Model 3: sym. Model 4: asym.
adj. costsandno  adj. costs and no adj. costs with adj. costs with
fin. constraint fin. constraint fin. constraint fin. constraint
Parameter - Value S.E. Value S.E. Value S.E. Value S.E.
Adj. costs
6o (Sym.) -0.8766°  0.0045 0.0078 0.0043
0, (Asym.) 1.32°  0.14 -0.044 0.060
6, (Asym.) 0.9960° 0.0079 00106  0.0043
Fin. constraint
Po -0.002 0.011 -0.004 0.011
o1 (AGE) -0.00047  0.00049 -0.00041  0.00049
p2 (V) 0.0010° 0.00051 0.00115° 0.00055
ps (TL.;) -0.00038  0.0012  -0.0005 0.0013
ps (NW,) -0.00073°  0.00018 -0.00079° 0.00018
ps (CL.) 0.0042 0.0027 0.0046 0.0026
ps (AGE,,)? 2.0x10°  2.5x10° 2.4x10° 2.5x10°
pr (VY 0.6x10°  1.0x10° 04x10° 1.I1x10°
ps (TL...)? 2.1x10°  2.6x10° -1.6x10°  2.8x10°
po (NW.)? 2.54x10%"  79x107 2.71x10%" 7.8x107
pro (CL..)? -1.58x10* 9.6x10° -1.70x10” 9.4x10°
J-stat. tests" P P- p-value p-value
value value
x* (O.R) 86.19 0.0027 83.53 0.0036 73.84 0.0017  73.59 0.0013
df 53 52 42 41
¥ (vs.M1) 2.67 0.1023 1235 03376 1261 0.3984
d.f 1 11 12
2 (vs.M4) 9.94 0.5361 025 0.6163
df 11 1

*O. R stands for overidentifying restrictions, M 1 stands for Model 1, and M 4 stands for Model 4. The
parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.

some similarities, but many differences. For comparison purposes, we concentrate on the

Euler equation models with the financial constraint since all of the other studies found results

2
I
favorable to that specification. Based on the mean values of ( X 2 u] from the data set
it-1

and the adjustment cost parameter estimates from Models 3 and 4 above, adjustment costs
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are quite small, —0.19 percent to 1.08 percent of the value of the pre-existing capital stock.
Hubbard and Kashyap (1992), Whited (1992), and Bierlen (1994) found much higher
adjustment costs, between 10 and 15 percent. Barren and Peeters (1998) and Estrada and
Vallés (1995) have adjustment costs similar to what is shown here. In their paper, Estrada
and Vallés suggest a possible reason for this discrepancy is measurement error due to the
fact that investment is constructed from capital stock changes. Our investment series was
calculated using this technique; thus, this may explain the adjustment cost results. We
examine this issue in the next section.

Several of the financial constraint variables have significant coefficients. The
multiplier for the financial constraint can be thought of as the shadow value of borrowing or
external finance, the value of an additional unit of debt. Given mean values for all of the
terms in the financial constraint, the shadow value of external finance is 100 percent. Bierlen
found a mean value of 69 percent for the shadow value of external finance on a similar
agricultural panel data set. Using a manufacturing panel data set, Whited computed a
median value of 12 percent. In both of these studies, there were firms that had computed
shadow values of external finance near 100 percent. Chirinko (1993) points out that ina
number of cases, studies have shown shadow values of external finance greater than 100
percent. Our study also indicates the possibility of shadow values above 100 percent. Such
high shadow values imply that farms face significant financing constraints and possible credit
rationing.

Net worth and the value of short-term assets were the two variables that were

significant i the financial constraint. To explore the relationships implied between the
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shadow value of finance and these variables, we have graphed the shadow value over
relevant ranges of values for these variables. These graphs are given in Figures 7.1 and 7.2.
The graphs are based on the parameter estimates from Model 3 with all other variables set at
their mean values. Both graphs are basically linear. The quadratic effect for net worth,
although statistically significant, is so small as to have a negligible impact. As the ratio of
the values of short-term assets to the capital stock increases, the shadow value of external
finance also increases. This result differed from what was expected. Most studies, such as
Hubbard, Kashyap, and Whited (1995), have found the relationship between variables

representing the capacity of the firm to carry financing and the shadow value of external
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Figure 7.1. Change in the shadow value of external finance due to short-term asset value
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Figure 7.2. Change in the shadow value of externat finance due to net worth

finance to be inverse. Firms that sustain a higher cash flow are less likely to fail in their debt
obligations. However, our results indicate farms with higher short-term asset values are
more constrained in the debt market. One argument for this may be a signaling argument.
Lenders may interpret higher short-term asset values as a signal that the farmer is unwilling
to liquidate their own assets to invest in the project, indicating a more risky venture.
Another argument is that the farmer may be practicing internal credit rationing, foregoing
possible loans and building up farm reserves for investment in the future.

Net worth and the shadow value of external finance have an inverse relationship. As
net worth increases, the shadow value of external finance decreases. The significance of the
quadratic term indicates that the shadow value decreases at a decreasing rate. Both Hubbard

and Kashyap (1992) and Bierlen (1994) found net worth to be significant. For comparison
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purposes, the Bierlen study is the most closely related. In his study, Bierlen found similar

results for this relationship.

7.2 Examining Gross Investment

In the discussion of the adjustment cost results from the previous section, we
mentioned that a possible explanation may be measurement error due to investment being
calculated from changes in the value of the capital stock. Many investment studies have
been concerned with this issue and have chosen to compute the series for the value of
capital. Following a technique outlined by Salinger and Summers (1983), given an initial
value of the capital stock, the gross investment (capital purchases) series, the price of
investment, and the estimated life left in the capital stock, the series for the value of the
capital stock is computed. The estimated life of the capital stock, L;, in any year is equal to

- Kt-l + It

DE where K., is the previous year’s value of capital, I, is the current year’s
t

Lt

gross investment, and DE, is the current year’s capital depreciation. The average useful life,
L, is often employed in the formulation. Then given the average capital life, L, an initial
value of the capital stock, Ko, and the gross investment series, I, the capital stock value

I

2
series is computed as K, =(Kt-—l L[t—+ It)(l ——J where p' is the price of the capital
P

t-1
good. The assumptions underlying this technique are:
1) all of the capital stock has the same amount of useful life (L);

2) book depreciation is calculated using the straight-line method;
3) actual depreciation is exponential with a depreciation rate of 2/L; and
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4) all investment is made at the beginning of the year and all depreciation is taken at
the end of the year.

The investment series that is examined in most studies is gross investment, not net
investment. We had chosen to examine net investment due to the length and composition of
our data set. Since the data set only contained five years of data, losing one year to have
lead or lagged variables is a high cost. Also, gross investment and depreciation were only
reported in three of those years. The examination of net investment would leave us with
three years of data to explore, while an examination of gross investment would limit us to
two years of data. However, given the results of the previous section, we now examine
gross investment under the Euler equation framework, calculating the value of the capital
stock using the Salinger and Summers method.

The structure of the Euler equation model remains the same. Gross investment is
equal to machinery and equipment purchases. Depreciation is listed as economic
depreciation for machinery and equipment. We allow L, the useful life of the capital stock,
to vary by farm. The results for gross investment Euler equations are given in Table 7.2.
Firm effects are included in the models; thus, the equations are first-differenced during the
estimation.

Three of the four models are not rejected; only Model 1, the most restrictive case
with symmetric adjustment costs and no financial constraint, is rejected. This indicates that
the overall fit has improved by examining gross investment, instead of net investment.
Among the four models, the model with symmetric adjustment costs and a financial

constraint, Model 3, is the preferred model. Many of the patterns seen in the net investment
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Table 7.2. Parameter estimates for gross investment equations

Model 1I: sym. Model 2: asym. Model 3: sym. Model 4: asym.
adj. costsandno  adj. costs and no adj. costs with adj. costs with
fin. constraint fin. constraint fin. constraint fin. constraint
Parameter Value S.E. Value S.E. Value S.E. Value S.E.
Adj. costs
8o (Sym.) 0.32 026 0.063 0.068
8, (Asym.) 1.8 2.0 022 0.59
9, (Asym.) 062 043 0.10 0.1
Fin. constraint
Po 0.016 0.039 0.015 0.039
o1 (AGE,,) -0.0023 0.0030  -0.0020 0.0029
p2 (VI 0.0086"  0.0043 0.0073 0.0051
ps (TLw.1) 0.0017 0.0032  0.0015 0.0032
ps (NW,,) -0.0035 0.0022  -0.0025 0.0030
ps (CLw1) 0.0072 0.0090  0.0058 0.0099
ps (AGE, ;) -1.9x10*  1.7x10®* -1.6x10*  1.7x10™*
pr (V)? -2.8x10*  13x10®* -24x10*  1.5x10*
ps (TL.\Y 74x10°  7.7x10°  6.3x10°  8.1x10°
pe (NW,)? 9.4x10%"  4.1x10° 7.9x10°  5.3xi0°
pro (CLy. Y -1.8x10°  93x10* -0.0016 0.0011
J-stat. tests® p- p- p-value p-value
value value
£ (O.R) 31.10 0.0194 24.42  0.0807 4.72 0.5796  4.68 0.4559
d£f 17 16 6 5
Y (vs.M 1) 6.68 0.0098 26.37 0.0057 2642 0.0094
d £ I 11 12
L (vs.M4) 19.74  0.0490 0.04 0.8358
df 11 1

*O. R. stands for overidentifying restrictions, M 1 stands for Model 1, and M 4 stands for Model 4. The
parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed -statistic.

estimates also occur in the gross investment estimates. In three of the models, we have
negative adjustment costs, although none of the adjustment cost parameter estimates are
statistically significant. The addition of the financial constraint leads to a reduction and sign

switch for the adjustment cost estimates. This time the reduction is by a factor of between

2
L.
five and nine times. Based on the mean values of (K—"t~—u) fiom the data set and the
it-1
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adjustment cost parameter estimates from Models 3 and 4 above, adjustment costs are still
quite small, —0.42 percent to 2.58 percent of the value of the capital stock.

Both net worth and the value of short-term assets are found to be statistically
significant in the preferred model, Model 3. Given mean values for all of the terms in the
financial constraint, the shadow value of external finance is 102 percent, again implying that
farms face financial constraints and possible credit rationing. If we compare the financial
constraint parameter estimates from Model 3 for both the gross and net investment runs, we
find that the same two variables appear significant, although the pattern has changed. In the
net investment estimation, both the linear and quadratic term for net worth and the linear
term for the value of short-term assets are significant. In the gross investment estimation,
both terms for the value of short-term assets and the quadratic term for net worth are
significant. Signs change for the parameter estimates of the quadratic terms for operator age
and the value of short-term assets and both terms of total Liabilities. The parameter estimates
for the financial constraint from the gross investment estimation also are more palatable from
an economic interpretation viewpoint. For example, under the net investment parameter
estimates, total liabilities and shadow value of external finance have an inverse relationship,
indicating that credit restrictions ease with higher levels of debt. This is counter to what we
had expected. The gross investment parameter estimates show total liabilities and the
shadow value of external finance to have a direct relationship, higher debt levels are paired
with tighter credit restrictions.

In Figures 7.3 and 7.4, we again explore the relationship between the shadow value

of external finance and the two variables found to be significant in the financial constraint,



117

1.09
1.06 + |
S |
2 1.03 + I
(=] i
S |
= !
7 i
1.00 4 |
{
|
0.97 + —+ f I

0 5 10 15 20
Short-term Assets ($)/Capital Stock ($)

Figure 7.3. Change in the shadow value of external finance due to short-term asset value

1.04
2 102 1
(]
>
ES
[=}
=
@ 1.00 T
0.98 i + +
0 5 10 15 20
Net Worth ($)/Capital Stock ($)

Figure 7.4. Change in the shadow value of external finance due to net worth



118

net worth and the value of short-term assets. As with the previous graphs, they are based on
the parameter estimates from Model 3 with all other variables set at their mean values.
Unlike before, the quadratic terms have a visible impact in these relationships, but the basic
relationships remain the same. As the value of short-term assets increases, the shadow value
of finance increases at a decreasing rate. As the ratio of net worth to the capital stock

increases, the shadow value of finance decreases at a decreasing rate.

7.3 Examining Reduced Models

Based on Model 3 from the gross investment analysis, we now explore reducing the
variables contained in the financial constraint. One reason to explore this is the possibility of
strong multicollinearity among the financial variables. When regressors are highly

correlated, we often see three problems that occur during the estimation procedure. These

are:
1) parameter estimates may have large standard errors and low significance levels
when they are jointly significant and the fit of the model is quite good;
2) small changes in the data produce large changes in parameter estimates; and
3) parameter estimates may have the wrong signs or implausible magnitudes
(Greene, 1990).

When we compare Models 3 and 4 from the gross investment results (Table 7.2),
three of the terms in the financial constraint are statistically significant in Model 3, while
none are in Model 4. But both models are not rejected by the J-test. These results suggest
that multicollinearity could be a major problem in this analysis. One way to alleviate the

mutlticollinearity problem is to reduce the number of variables in the model; this is the
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approach we employ. Other approaches include the use of additional information in the
model and the use of other estimators, such as ridge regressions and principal component
estimation for regression analysis.

We construct the 30 various submodels contained within Model 3 by omitting one or
more of the variables from the financial constraint. When we omit a variable, both the linear
and quadratic terms are removed. Table 7.3 lists the 30 submodels and shows the J- test
results of each submodel versus Model 3 from Table 7.2. A p-value above 0.05 indicates
evidence for accepting the reduced model over Model 3. The parameter estimates for all of

these submodels are given in Appendix 3.

Table 7.3. Testing the submodels

Variables x> d.f p-value | Variables ¥’ d.£ p-value
V, TL,NW, CL 1.84 2 03991 |[NW,CL 1431 6 0.0264
Age, TL,LNW,CL 520 2  0.0742 |TL,CL 1077 6  0.0958
Age, V,NW, CL 319 2 02029 | TL,NW 1294 6 0.0439
Age, V, TL,CL 6.15 2 00461 |V,CL DNC 6 ,
Age, V, TL, NW 420 2 0.126 |V,NW 1144 6 0.0756
TL, NW, CL 1076 4  0.0294 |V, TL DNC 6

V,NW, CL 380 4 04332 |Age,CL DNC 6
V,TL,CL 10.77 4  0.0293 | Age, NW 1344 6 0.0365
V, TL, NW 1127 4  0.0237 | Age, TL 1000 6 0.1248
Age, NW, CL 856 4  0.0732 | Age, V DNC 6

Age, TL, CL 688 4 0.1424 |CL 1947 8 00125
Age, TL, NW 6.12 4  0.1903 |NW 14.14 8 0.0781
Age, V,CL DNC™ 4 TL 1408 8 0.0797
Age, V,NW 677 4 0148 |V DNC 8

Age, V, TL 300 4 05582 | Age 1794 8 0.0217

"DNC stands for did not converge.
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Fifteen of the submodels are preferred to the full model, Model 3. To quickly
summarize the patterns of the submodel estimates, we concentrate on three of the
submodels. The parameter estimates from these submodels are given in Table 7.4. Many of
the other submodels have results which are very similar to these three submodels. The first
submodel has statistically significant parameter estimates for three of the financial variables
and a small adjustment cost parameter estimate. Four of the 15 submodels show such a

pattern with at least one of the financial variables having a significant parameter estimate.

Table 7.4. Selected submodel results

Parameter Value S.E. Value S.E. Value S.E.

Adj. costs
0o 0.015 0.052 0.127 0.051 -1.89° 0.74

Fin. Constraint
Po 0.035 0.025 0.034 0.021  -13 31
P (AGE.) -0.0042  0.0025  -0.03 0.15
P2 (Vo) 0.0046" 0.0023 5 10
p3 (TLe) 0.0026  0.0017 0.14 0.28
ps (NW..) -0.0019 0.0015  -0.0006  0.0013
ps (CLe1) 0.0107 0.0059
ps (AGE.,) 2.5x10*  1.3x10°  -0.010 0.016
pr (Vo) -1.98x10%  7.9x10° -0.37 0.82
ps (TLet)’ 48x10°  3.9x10°  -0.007 0.016
ps (NW.1)? 8.0x10°°  3.3x10°  7.1x10° 9.6x10°
po (CL..)>  -1.80x10%"  7.1x10*

J-stat. tests® p-value p-valie p-value
v’ (O.R.) 8.53 0.5774  10.85 0.3696 7.72 0.6559
d.f 10 10 10
¥* (vs. full) 3.80 0.4332 6.12 0.1903 3.00 0.5582
d£ 4 4 4

*0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 7.2. The

parameter estimates for the time effects are not presented.
Significantly different from zero at the 5% level based on the two-tailed #-statistic.
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Ten of the submodels have parameter estimates similar to the second submodel in Table 7.4.
The adjustment cost parameter estimates is twice as large as the same estimate for the full
model. If anything is statistically significant from the financial constraint, it is the intercept.
The third submodel is unique in that it is the only submodel preferred over the full model to
have a negative adjustment cost parameter estimate and the estimate is statistically
significant. None of the parameter estimates from the financial constraint are significant, but
there is an abrupt change in the parameter estimates. Whereas all of the other submodels
and the full models have mean shadow values of external finance around 100 percent, this

submodel has a mean shadow value of zero percent.

7.4 Passible Reasons for Results

The estimations from the Euler equation specification contain a mixture of positive
and negative results, mostly negative. Some of the estimations indicate that a financial
constraint is relevant and net worth, the value of short-term assets, and current liabilities are
significant. However, the results are not robust. Estimates for the shadow value of external
finance often exceed 100 percent. Adjustment costs are estimated either to be negative or
extremely small. Several problems seem to plague the analysis.

One possible problem we examine is the inclusion of 1993 in our short panel data set.
Agriculture in Iowa suffered a great deal in that year due to extreme wet conditions in the
spring and the floods of that summer. These weather events put a strong financial burden on

many farms and may have moved farmers to make unusual decisions. To explore whether
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1993 had adversely impacted the resuits, we estimate the traditional Euler equation with
symmetric adjustment costs and no financial constraint on a year-by-year basis. The
estimates are very similar for each of the years, indicating 1993 did not adversely impact the
study.

The adjustment cost functions we employed in the model may not be rich enough to
capture investment adjustment costs. Several studies have explored adjustment cost issues.
Goolsbee and Gross (1997) examined adjustment costs for airlines and find non-convexities
in adjustment costs at the plant level. Firms have a large area of investment inactivity where
desired and actual output may differ between 10 and 40 percent before investing.
Hamermesh and Pfann (1996) reviewed various adjustment cost specifications and point out
that although some firms may face symmetric adjustment costs, often this specification is
dominated by some other specification. Most microeconomic data do not support the
symmetric convex adjustment cost assumption. Our results are indicative of this last
statement.

In another attempt, we modify the adjustment cost function to another asymmetric

cost form given by

Ad,.K, )= 0.59(-1;— )2 0 I +exp(6 L) 1K
t> 41 0 Kt_l 1 Kt_l 1 Kt_l t—1-

If 8, is zero, adjustment costs are symmetric. If 0, is positive, marginal adjustment costs are

higher for positive investment than for disinvestment. Marginal adjustment costs for

disinvestment are higher than for positive investment if 0, is negative. Parameter estimation
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with this form of adjustment costs ended with either non-convergence of the estimation or
implausible parameter estimates.

Within the last few years, some studies have questioned both the Euler equation
approach and the GMM estimation technique. Carroll (1997) investigated consumption
Euler equation estimation. His analysis suggested that the application of GMM to the full
nonlinear Euler equation can suffer greatly if there is measurement error in the data. Ina
series of papers, Oliner, Rudebusch, and Sichel (1995, 1996) attacked the GMM-Euler
equation combination. They found that more traditional models of investment outperform
Euler equation models in forecasting investment and that Euler equation models have much
larger squared forecast errors. They also found the parameter estimates from Euler
equations models to display instability.

Examining inventory from manufacturing data, Fuhrer, Moore, and Schuh (1995)
compared GMM and maximum likelihood (ML) parameter estimates. Their findings
indicated the GMM estimates are “often biased (apparently due to poor instruments),
statistically insignificant, economically implausible, and dynamically unstable.” ' Meanwhile,
the ML estimates are generally the opposite. In Monte Carlo simulations, the authors
showed GMM to suffer from small sample parameter bias and they related this to the quality
of the instrumental variables. Nelson and Startz (1990) cautioned that instrument variables

approaches suffer when the instruments are weakly correlated with the explanatory variables.

! From the abstract of their paper.
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CHAPTER 8. CONCLUSIONS

Usmng two different approaches, we have examined the relationship between a firm’s
investment and its financial variables. Under perfect capital markets, there would be no
relationship between the two. However, imperfections in the market such as asymmetric
information have led researchers to explore these potential relationships. Our study
continues in that vein. The 5 Cs of lending (character, capacity, collateral, credit rating, and
capital) summarize the attributes lenders desire in borrowers. In both approaches, we
incorporated proxies for these characteristics into the farmer’s investment decision and
explored the impacts of these variables on farm machinery investment.

The first approach consisted of a composite regression model constructed from
various elements of traditional investment models and variables representing the 5 Cs of
lending. This approach expanded the literature in three ways. First, the inclusion of several
financial variables allowed for multiple linkages between investment and financial variables
instead of narrowing the focus to one variable. Second, the parameters in the model were
estimated using a Bayesian approach which, to our knowledge, has not been employed
before in this area. Third, the model we fitted to the data was an extension of the usual
mixed linear model, where the distribution of the residuals was taken to be a mixture of
normal distributions with unknown mixing proportions and unknown variance components.
We used a stochastic variable selection approach based on Bayes factors to select the fixed

regressors in the model.
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The second approach derived an investment equation from the firm’s optimization
problem, an Euler equation approach. The 5 Cs of lending were incorporated into the
problem through a multiplier associated with a borrowing constraint. This approach also
extends the literature through the possibility of multiple links between investment and
financial variables. Also, our study is one of a very limited number of agricultural investment
studies (to our kmowledge, there is only one other study) to use farm level data with the
Euler equation approach.

The data set is composed of 590 Iowa farms that are members of the lowa Farm
Business Association and have reported farm level financial and production data from 1991
to 1995. The use of farm level data has several advantages in this type of study. The theory
underlying investment models is based on firm level decisions. Most investment studies,
though, have estimated investment models on aggregate industry data. The credit constraint
issue is also an area where the theory behind the models originates from firm level decisions.
Our study employs data that are at the level at which the theory is developed.

For both approaches we incorporate the 5 Cs of lending through the use of proxy
variables. The five variables chosen to represent the 5 Cs are operator age, the value of
short-term assets, total farm lLiabilities, net worth, and current farm liabilities. For the
composite regression analysis, we begin with estimates from the classical mixed model
approach. The regression model combines the variables listed above with elements of other
traditional imvestment models, such as the change of output from the accelerator model. Of
the nine variables included in the analysis, all but one (total liabilities) have terms with

statistically significant parameter estimates. Elasticities indicate that operator age, the cost
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of capital, and the value of short-term assets have the largest relative impacts on farm
machinery investment.

We considered various formulations of the model described earlier when performing
the estimation within the Bayesian framework. The first model formulation we examined
included the variable selection component in the estimation but not the outlier detection
component. This set-up is the most closely related to the classical mixed model in which
variables were included in the model without any selection procedure and errors were taken
to be normally distributed. Only six of the nine regressors are selected over 80 percent of
the time. The three variables that are not selected are total farm liabilities, net worth, and
current farm liabilities, three of the proxies for the 5 Cs of lending. However, many of the
results from this formulation parallel those from the cla;sical mixed model.

The next model formulation adds the outlier detection component to the model.
Change in output, the value of short-term assets, lagged machinery value, and lagged
investment are selected at least 80 percent of the time. Thus, only one of the variables
representing the 5 Cs of lending is supported under the model. The variable from the
accelerator model of investment, change in output, is also supported; but the neoclassical
variable, the cost of capital, is not. The outlier detection component indicates that 25 to 30
percent of the observations may be outliers. The addition of the outlier detection component
has a strong impact on the error variance estimates as expected. The estimate of the residual
variance obtained from a classical viewpoint and from the Bayesian approach without the
outlier detection component was equal to about five. With the outlier detection component,

the error variance is estimated to be less than one. Elasticity measures based on the
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parameter estimates from this simulation show lagged machinery value, the value of short-
term assets, and operator age to have the largest relative impacts on imvestment.

Eight other model formulations, obtained by changing the settings of the variable
selection and outlier detection components, were also considered, and marginal posterior
distributions for all parameters were obtained. The results are consistent with those obtained
from the original model formulation. As the prior probability of variable inclusion is changed
from 50 to 90 percent, operator age and lagged investment are added to the selected variable
list. As the prior probability of variable inclusion is changed from 50 to 10 percent, change
in output is removed from the selected variable list. Posterior means, variance estimates, and
the outlier detection hyperparameter estimates are all quite consistent across the alternative
model formulations.

The results imply strong support for the accelerator model of investment with the
inclusion of other relevant variables, ]agge& machinery value, lagged investment, and the
value of short-term assets (one of the proxies for the 5 Cs). Another one of the proxies,
operator age, receives less support. The other proxies, net worth and the liability measures,
receive little to no support, which is unexpected since these variables are usually among the
first financial variables researchers add to investment models.

The Bayesian framework with the variable selection and outlier detection
components works very well. This structure could be put in place to examine many issues in
agricultural economics and many other fields. Future research efforts include the application
and extension of this type of model. For example, estimating production technical efficiency

is one area in which this approach may be useful.
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The Euler equation approach is more problematic. Under the original specification
looking at net investment, all models are rejected and the preferred model is also the most
restrictive, with symmetric adjustment costs and no financial constraint. Within the financial
constraint, only the value of short-term assets and net worth are ever found to be statistically
significant. Estimated adjustment costs are either negative or positive but very small. The
shadow value of external finance is estimated to be around 100 percent.

One possible explanation for these results can be found from the examination of net,
versus gross, investment with measurement errors in the value of the capital stock. To
explore this issue, we also estimate the models for gross investment. Three of the four
models are not rejected by Hansen’s J-test. The preferred model has symmetric adjustment
costs and a financial constraint. The effects for the value of short-term assets and net worth
are significantly different from zero. But many of the problems that occurred in the net
investment analysis also occur in the gross investment analysis. For both of the Euler
equation analyses, higher shadow values of external finance are linked to higher values of
short-term assets and lower values of net worth.

Multicollinearity is a strong possibility with the financial variables included in this
analysis. We examine the 30 various submodels contained within the financial constraint
specification to monitor whether multicollinearity affected the results and to see if any of the
reduced forms would be preferred over the original financial constraint. Fifteen of the
submodels are preferred over the original, but many of these have no statistically significant

parameter values.
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Given the mostly negative results from the Euler equation framework, we review the
possible reasons for them. The data set has a small time series component and one of the
years could be considered extreme. The data do not support the econometric models on
adjustment costs, as evidenced by the many negative parameter estimates. Recent studies
bave also found several weaknesses in the Euler equation - generalized method of moments
combination. More traditional models of investment outperform Euler equation models in
forecasting. Parameter estimates display instability. GMM has also been found to suffer
from small sample bias.

In his study of consumption Euler equations, Carroll (1997) suggested that the Euler
equation approach “should be abandoned” for other econometric approaches. Based on the
results from this study, we are more inclined to think in that direction also. Further research
needs to address the small samples of GMM estimators. The stability of the parameter

estimates are of the utmost importance, especially for analyses done at the aggregate level
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APPENDIX 1. TESTING THE BAYESIAN PROGRAM

Before estimating the various models, we tested our Bayesian computer programs on
two simulated data sets. In the first data set, we created 225 observations (15 groups with
15 time periods of data) of ten independent variables from several Normal distributions in
Microsoft Excel and saved these as constants. Next we created annual random effects
(Normal (0, 1)) and residual errors (Normal (0, 16) except for nine outliers, Normal (0,
1600)). We computed the dependent variable as a linear function of the constants, the
random effects, and the residuals. We then modified the model outlined in Chapter 4 for this
data and estimated the model twenty times to see how the variable selection and outlier
detection components would perform under a controlled environment.

Table Al.1 shows the formula for the dependent variable and the summary statistics

for the regressors in this example. Two of the ten independent variables are not used in the

Table Al.1. Summary of the 1% test data set

Y =20+ 1*X1 - 2*X2 + 3*X3 - 5*XS5 + 6*X6
- 7*X7 - 9*X9 + 10*X10

Variable Minimum Mean Maximum

X1 -11.162 3.852 15.274
X2 5.184 10.029 14.594
X3 -22.755 -6.471 11.884
X4 -7.058 -3.874 -0.798
X5 7.571 15.260 23.020
X6 0.606 2.003 3.398
X7 12.553 25.293 44.197
X8 -28.076  -15.426 -3.782
X9 0.301 0.967 1.630

X10 1.272 6.016 10.949
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calculation of the dependent variable. Each of the twenty Bayesian simulation runs consists
of four chains of four thousand iterations, for a total of 16,000 observations. In each run,
the prior probability for variable selection is set at one-half and the prior for the proportion

of outliers is set at 0.1. Behavior of the chains is monitored by Gelman and Rubin’s R-

statistic, JR. Convergence is assumed when w/IT( is below 1.2 for all parameters.

In Table Al.2, we summarize the results of the twenty simulations. The simulations
went extremely well. The means for the parameter estimates are nearly identical to the
actual values. The variable selection component correctly chose the eight variables included
in the equation. The outlier detection component correctly identified the nine outliers at
least 85 percent of the time. The other observations were identified as outliers less than

eight percent of the time.

Table Al.2. Summary of the results for the 1% test data set

Posterior quantiles % of times

Variable Mean 2.5% 25% 50% 75% 97.5% chosen
X1 Q) 0.996 0.839 0.943 0.996 1.050 1.153 99.96
X2 (-2) -2.014 -2.348 -2.128 -2.013 -1.901 -1.685 99.80
X3(3) 3.002 2.879 2.960 3.002 3.044 3.126 100.00
X4 (0) 0.000 0.000 0.000 0.000 0.000 0.000 1.45
X5 (-5) -5.007 -5.228 -5.082 -5.005 -4.930 -4.793 100.00
X6 (6) 5.996 4730 5.559 5.993 6.435 7.266 99.62
X7 (7 -6.977 -7.087 -7.015 -6977 -6.939 -6.866 100.00
X8 (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.89
X9 (-9) -8.851 -11.184 -9.644 -8.843 -8.052 -6.549 99.43
X10(10) 10.015 9689 9902 10.015 10.127 10.340 100.00
Parameter

11 (0.96) 0.927 0.875 0912 0.929 0.943 0.965

c,z ) 0.610 0209 0.372 0.520 0.745 1.538

c2(16) 19705 15.753 18.166 19.567 21.098 24.391

"Numbers in parenthesis are the actual values.
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For the second test, we manufactured an investment data set based on the actual
investment data we are studying. Our model contains 54 effects (9 main linear effects, 9
quadratic effects, and 36 cross effects). Ten of these were chosen at random and combined
to form a series of hypothetical investment data. Thus the hypothetical data set would have
the same structure as the actual data set, but we would precisely know the data generating
mechanism for investment. We then estimated the parameters in the model as we would
with the actual data set with our full model specification under the variable selection and
outlier detection components. The equation for investment is given by:

I".; = AQi; + AGEi;; + 0.1*AQ;* — 0.01*TLi.,> + 0.1*K .12 — Vi * IV
+ 0.1*NW; ., *CLi, — 0.01*NW, . *Kirs + NWi * TV
- Ki.t-l*INi,z-l + &y

where ¢;; is a standard normal random disturbance. We have not built in an intercept, any
annual random effects, or any outliers; but our estimation procedure will search for and
include these features.

For this test, we simulated four chains with 1,000 iterations each. Convergence is
monitored by Gelman and Rubin’s R-statistic, \/IT{ . Table Al.3 summarizes the results of the
simulations. The simulations were long enough to allow most of the estimates to be
considered “converged” with exceptions being the intercept and annual random effects. The
variable selection component performed rather well. It selected the correct variables a vast
majority of the time. While each of the included variables was chosen at least 98.7 percent
of the time, each of the excluded variables was chosen for the model less than 16.2 percent

of the time with most of those below five percent. Due to the structure of our model for the
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Table Al.3. Summary of the results for the 2™ test data set

Posterior quantiles % of times
Variable Mean 25% 50% 97.5% VR chosen
Intercept 022 -051 001 129 360 100.00
AQi; 1.00 1.00 1.00 1.01 1.00  100.00
Vi 0.00 0.00 000 0.00 1.19 5.75
Ci 0.00 0.00 000 0.00 1.10 5.58
AGEi.. 1.00 1.00 100 1.00 1.00  100.00
TLis 0.00 0.00 000  0.00 1.00 11.35
NW. 0.00 000 0.00 0.00 1.00 2.53
CLisi 0.00 000 000 0.00 1.01 9.40
Kis1 0.00 000 000 0.00 1.02 8.70
M -0.00 0.00 0.00 0.00 1.04 3.13
AQ:l 0.10 0.10 0.10 0.10 1.00  100.00
' 0.00 0.00 000 0.00 1.00 5.68
C.2 -0.00 0.00 0.00 0.00 1.07 1.40
AGE;,? 0.00 000 000 0.00 1.00 0.33
TLiwt? 001 -001 -0.01 -0.01 100 9948
NW,.. 0.00 000 0.00 0.00 1.00 6.60
CLi,..’ 0.00 000 0.00 0.00 1.00 16.15
Kiri? 0.10 0.10 0.10 0.10 1.01 99.80
N2 0.00 000 000 0.00 1.01 3.40
AQ.*V;, 0.00 000 0.00 0.00 1.00 1.73
AQ,*C.; 0.00 000 0.00 0.00 1.00 0.93
AQ.*AGE;,; 0.00 000 000 0.00 1.00 0.20
AQ;*TLi,. 0.00 000 000 0.00 1.00 0.75
AQ*NW,,  0.00 000 000 0.00 1.00 0.53
AQ;*CLi,, 0.00 000 000 0.00 1.00 0.68
AQi*Ki 0.00 000 0.00 0.00 1.00 0.15
AQi*TNis 000 000 000 0.0 1.12 1.53
Vi*Ci, 0.00 000 000 0.00 1.00 0.50
Vi*AGEi . 0.00 000 0.00 0.00 1.00 3.43
Vi*TLis 0.00 000 000 0.00 1.00 11.65
Vi*'NWi 0.00 000 000 0.00 1.00 7.03
Vi*CLiy 0.00 000 000 0.00 1.00 13.50
Vie*Ki 0.00 000 000 0.00 1.00 6.05
Vi N -1.00 -100 -1.00 -1.00 1.00 99.88
Ci*AGE; . 0.00 000 000 0.00 1.00 0.33
Ci*TLi, 0.00 000 000 0.00 1.00 0.33
Ci*NW, 0.00 000 000 0.00 1.00 0.30
Cis*CLi,. 0.00 000 000 0.00 1.00 0.30
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Table A1.3. (continued)

Posterior quantiles % of times
Variable Mean  2.5% 50% 975% VR  chosen
Cit*Kir 0.00 0.00 0.00 000 1.33 0.63
Ci*INis -0.00 0.00 000 0.00 1.01 1.88

AGE; ;. *TLis 0.00 0.00 0.00 0.00 1.00 6.63
AGE; *NW;;; 0.00 0.00 0.00 0.00 1.00 4.75
AGE; ;.. *CLis 0.00 0.00 0.00 0.00 1.00 9.80
AGE; ;1 *Kiz1 0.00 0.00 0.00 0.00 1.00 4.13
AGE; . *IV1 0.00 0.00 0.00 0.00 1.00 3.03

TLie1*NWig 0.00 000 000 0.00 1.00 11.45
TLit1*CLig1 0.00 000 000 0.00 1.00 8.25
TLie1*Kict 0.00 0.00 0.00 0.00 1.00 7.25
TLit* i -0.00 0.00 0.00 0.00 1.01 6.48
NWi1*CLix 0.10 0.10 0.10 0.10 1.00  100.00
NWi *Kip1 001  -0.01 -0.01 -0.01 1.00  98.70
NWi * N 1.00 100 100 1.00 1.00  100.00
CLir1*Kir1 0.00 000 000 0.0 1.00 9.60
CLip*Tii 0.00 000 000 0.00 1.00 6.25
Kig-t*INi -1.00 -1.00 -1.00 -1.00 1.00  99.95
Parameter

n 1.00 099 1.00 1.00 1.01

ol 0.99 092 099 1.06 1.00

G, 0.48 026 044 093 1.13

actual data set, an intercept and annual random effects are always simulated. Since the
fabricated data employed here did not include an intercept or annual random effects, it is not
surprising that the model struggled to handle these factors and basically set the intercept to
cancel the annual effects.

The mean parameter estimates are nearly identical to the actual values and the spread
of the estimates, as shown by the quantiles from the simulation sample, is quite narrow
around the means. The outlier detection component also performed quite well. Only 12 of

the observations (less than one percent of the observations) were chosen as outliers over ten
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percent of the time. The error variance mean estimate is also very near the actual value.
The table includes the estimates for the annual random effects and their variance. Given the

results of this test of our program, we proceeded with the estimation with actual data.
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APPENDIX 2. POSTERIOR DISTRIBUTIONS FROM DIFFERENT MODEL

FORMULATIONS
Table A2.1. Summary of results for model Var1QOutl
Posterior Posterior quantiles % of times

Variable Mean 2.5% 50% 975% VR chosen
Intercept -0.039 -0.909 -0.019 0.766 1.04 100.00
AQi; 0.009 0000 0000 0036 1.00 4045
V.. 0.017 0009 0017 0.025 1.00 9829
(o 0.005  0.000 0.000  0.093 1.05 6.38
AGEi,. -0.001 -0.012 0.000 0000 1.00 1534
TLis 0.000 0.000 0000 0.000 1.00 0.04
NWi 0.000 0000 0.000 0.000 1.00 0.03
CLiwt 0.000 0.000 0.000 0.000 1.02 0.10
Kist -0.061 -0.074 -0.061 -0.046 1.00 99.97
| -0.008 -0.074  0.000 0.000 1.0l 14.19
AQ;’ 0.000 0.000 0.000 0.000 1.00 0.01
Vil 0.000 0.000  0.000 0.000 1.00 0.20

i 0.000 0.000 0000 0000 1.07 0.23
AGE;,..)? 0.000 0.000 0.000 0.000 1.00 0.01
TLipt? 0.000 0.000 0.000 0.000 1.00 0.01
NWi.2 0.000 0.000 0.000 0.000 1.00 0.01
CL ..’ 0.000  0.000 0000 0.000 1.00 0.03
Kt 0.000 0000 0000 0000 1.00 0.02
Nt 0.017 0.000 0019 0025 103  87.33
AQi*Vi, 0.000 0.000 0000 0.000 1.00 0.01
AQ;*Ci, 0.000 0.000 0.000 0.000 1.00 0.03
AQi*AGE;,., 0.000 0.000 0000 0.000 1.00 0.02
AQi*TLis 0.000 -0.001 0000 0.000 1.01 6.27
AQi*NWi,, 0.000 0.000 0.000 0.000 1.00 0.01
AQi*CLi, 0.000 0.000 0.000 0.000 1.01 2.27
AQi*Kir1 0.000 0.000 0000 0.000 1.00 0.21
AQi* TN, 0.000 0.000 0.000 0.000 1.00 0.05
Vit*Cie 0.000 0000 0.000 0.000 1.00 0.03
Vis*AGEi 0.000 0.000 0000 0.000 1.00 0.01
Vie*TLiu 0.000 0.000 0000 0.000 1.00 0.02
Vie*NWi, 0.000 0000 0.000 0.000 1.00 0.40
Vie*CLis 0.000 0.000 0000 0.000 1.00 0.08
Vie*Kis 0.000 0.000 0000 0.000 1.00 0.04
Vie* Tt 0.000 0000 0.000 0.000 141 0.08
Ci*AGE;,. 0.000 0.000 0000 0.000 1.00 0.03
Cit*TLis 0.000 0.000 0000 0.000 1.02 0.54

Cii*NWi,, 0.000 0.000 0.000 0.000 1.00 0.02
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Table A2.1. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% VR chosen
Ci*CLis 0.000 0.000 0.000 0.000 1.09 0.23
Ci*Kipr - -0.001  -0.010 0.000 0.000 1.00 6.88
Ci*TNp) 0.000 0.000 0.000 0.000 1.01 0.63

AGE;*TL,; 0.000 0000 0000 0000 1.00 0.0l
AGE;,,*NW,,; 0.000 0000 0000 0000 1.00  0.01
AGE.,*CL;,; 0.000 0000 0000 0.000 100 001

AGE; . *K;,. 0.000 0.000 0000 0000 1.00 0.02
AGE;*IV;,., 0.000 0.000 0000 0.000 1.09 0.11
TLig1 *NWig 0000 0.000 0000 0.000 1.00 0.04
TLiz1*CLit 0000 0.000 0000 0.000 1.00 0.01
TLis1*Kist 0.000  0.000 0.000  0.000 1.00 0.01
TLip* Vi 0.000 0000 0.000 0000 100 0.2
NWi.i*CLis 0000 0.000 0.000 0000 1.00 0.05
NW, . *K;,., 0000 0.000 0000 0.000 1.00 0.01
NWie * N 0000 0.000 0000 0.000  1.00 0.03
CLit1*Kiss 0000 0.000 0000 0000 1.00 0.01
CLig*Nis 0000 0000 0000 0000 1.03 0.33
Kipt*Niper 0.000 0.000 0.000 0.000 105 1.37
Parameter

n 0741 0.703  0.741 0778  1.00

o’ 0939 0.832 0937 1061 1.00

o 0.458 0.248 0429  0.834 1.00
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Table A2.2. Summary of results for model Varl OQut5

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% a\m chosen
Intercept -0.182 -1.110  -0201 0.871 1.04 100.00
AQi, 0010  0.000 0.000  0.039 1.01 4372
Vi 0017  0.007 0017  0.025 1.01 9798
Cit 0.007  0.000 0.000 0.111 1.02 6.69
AGEi,. -0.002  -0.012 0.000  0.000 1.00 1580
TLis1 0.000  0.000 0.000  0.000 1.00 0.05
NW... 0.000  0.000 0.000  0.000 1.00 0.02
CLiz 0.000  0.000 0000 0.000 1.09 0.07
Kizt -0.060 -0.074 -0060 -0.044 101 9995
| o -0.008  -0.073 0.000  0.000 1.00  13.31
AQ; 2 0.000 0.000 0.000  0.000 1.00 0.02
Vil 0.000  0.000 0.000  0.000 1.00 026
Ci 0.000  0.000 0.000 0000 1.03 0.20
AGE;,.,? 0.000  0.000 0.000  0.000 1.00 0.01
TLipt? 0.000 0.000 0.000  0.000 1.00 0.01
NWi...2 0.000  0.000 0.000  0.000 1.00 0.01
CLi. 0.000  0.000 0.000  0.000 1.00 0.02
K’ 0.000  0.000 0.000  0.000 1.00 0.02
| 0.016  0.000 0.018  0.025 1.03  83.68
AQi*Vi, 0.000  0.000 0.000  0.000 1.00 0.02
AQi*Ci, 0.000  0.000 0.000  0.000 1.00 0.03
AQi*AGE;,, 0.000  0.000 0.000  0.000 1.00 0.01
AQi*TLiy 0.000  -0.001 0.000  0.000 1.06 6.02
AQi*NW, . 0.000  0.000 0.000 0.000 1.00 0.01
AQi*CList 0.000  -0.001 0.000  0.000 1.05 3.04
AQi*Kis 0.000  0.000 0.000 0.000 1.01 0.24
AQi AT 0.000  0.000 0.000  0.000 1.00 0.04
Vi *Ci, 0000  0.000 0.000  0.000 1.00 0.04
Vi:*AGE;,. 0.000  0.000 0.000 0000 1.00 0.02
Vi*TLiz 0.000  0.000 0.000  0.000 1.00 0.03
Vi *NWie, 0.000  0.000 0.000  0.000 1.00 0.26
Vis*CLi 0.000  0.000 0.000 0000 1.00 0.07
Vie*Kiri 0.000  0.000 0000 0000 1.00 0.03
Vi TN 0.000 0.000 0.000  0.000 1.24 0.13
Ci*AGE;,, 0.000  0.000 0.000 0.000 1.00 0.03
Cii*TLis 0.000  0.000 0000 0000 1.03 0.44
Ci*NWi. 0.000  0.000 0.000  0.000 1.00 0.01

Ci.*CLis 0.000 0.000 0.000  0.000 1.11 0.27
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Table A2.2. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% «W- chosen
Cis*Kin -0.001 -0.010 0.000 0.000 1.00 6.19
Cie*INip 0.000 0.000 0.000 0.000 1.01 0.54

AGE;..*TLi,.  0.000 0.000 0.000 0.000 1.00 0.01
AGE;;../*NW;,., 0.000 0.000 0.000  0.000 1.00 0.01
AGE;..*CL;,;  0.000 0.000 0.000  0.000 1.00 0.01
AGE;.1*Ki1 0.000 0.000 0.000 0.000 1.00 0.02
AGE; .. .*TNi1 0.000 0.000 0.000 0.000 1.03 0.10
TLie1 *NWir 0.000 0.000 0.000 0.000 1.00 0.02

TLiz 1 *CLixi 0.000 0.000 0.000  0.000 1.00 0.01
TLi*Kia 0.000 0.000 0.000  0.000 1.00 0.01
TLig* i 0.000 0.000 0.000  0.000 1.00 0.03
NW, .1 *CLi 0.000 0.000 0.000 0.000 1.00 0.04
NW,.1*Ki -1 0.000 0.000 0.000 0.000 1.00 0.01
NWi N 0.000 0.000 0.000 0.000 1.00 0.01
CLis1*Ki1 0.000 0.000 0.000  0.000 1.00 0.02
CLiwt* Vi1 0.000 0.000 0.000 0.000 1.19 0.47
Kot * Mg 0.000 0.000 0.000  0.003 1.04 2.63
Parameter

1 0.732 0.693 0.732 0.771 1.00

o 0.921 0.813 0919  1.040 1.00

oy 0.469 0.251 0439 0.864 1.01
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Table A2.3. Summary of results for model VariOut9

Posterior Posterior quantiles % of times
Variable Mean  25%  50% 975% VR  chosen
Intercept -0.104 -0946 -0.084 0612 1.12  100.00
AQi; 0012 0.000 0000  0.039 101 4699
Vie 0.018 0.010 0018  0.026 1.00  99.19
Cis 0.005 0.000 0000 0088 1.02 4.58
AGE; ., -0.001  -0.012 0.000  0.000 1.00 1536
TLis 0.000 0.000  0.000 0.000 1.00 0.04
NWiri 0.000  0.000 0.000  0.000 1.00 0.03
CLisi 0.000 0.000 0.000  0.000 1.21 0.08
Kipt -0.061 -0.075 -0.061  -0.045 1.00 99.96
| -0.008 -0.074  0.000 0.000 1.00  13.01
AQ; 2 0.000 0000 0000  0.000 1.00 0.01
Vil 0.000 0.000 0.000  0.000 1.00 0.13
Ci 0.000 0.000 0.000  0.000 1.12 0.17
AGE; 0.000 0.000 0.000  0.000 1.00 0.01
TLizt 0.000 0000 0000 0000 1.00 0.01
NW;,..2 0.000 0.000 0.000  0.000 1.00 0.01
CLiwt’ 0.000 0.000 0000 0.000 1.00 0.04
Kigi® 0.000 0.000 0.000  0.000 1.00 0.01
| 0.015 0000 0018  0.025 101  83.58
AQ.*V;, 0.000 0000 0000  0.000 1.00 0.03
AQ*C;, 0.000 0.000 0.000  0.000 1.00 0.05
AQi*AGE;,, 0.000 0.000 0000  0.000 1.00 0.01
AQi*TLi., 0.000 -0.001 0.000  0.000 1.03 6.57
AQ*NW,,., 0.000 0.000 0.000  0.000 1.00 0.01
AQ;*CLis 0.000 0.000 0.000  0.000 1.03 2.11
AQi*Kig 0.000 0000 0000 0000 1.00 0.15
0 0.000  0.000 0.000  0.000 1.00 0.06
Vi *Ciy 0.000 0000 0000 0000 1.00 0.05
Vi*AGE;., 0.000 0.000 0.000 0000 1.00 0.01
Vi*TLiy 0.000 0000 0.000  0.000 1.00 0.02
Vi*NW,,., 0.000 0000 0000 0.000 1.00 0.20
Vir*CLis 0.000 0000 0000 0000 1.00 0.06
Vie*Kig 0.000 0.000 0000 0000 1.00 0.02
Vit i 0.000 0.000  0.000 0.000 1.05 0.11
Ci*AGE;,., 0.000  0.000 0.000  0.000 1.00 0.02
Ci*TLips 0.000 0.000  0.000 0.000 1.01 0.52
Ci*NW,,., 0.000 0000 0000 0000 1.00 0.01
Ci*CLio 0.000 0.000 0.000  0.000 1.06 0.25
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Table A2.3. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% )\.HM chosen
Ci*Kir1 0.000 -0.009 0.000 0.000 1.00 5.33
Ci* N 0.000  0.000 0.000 0.000 1.02 0.48

AGE*TL,; 0.000 0000 0.00 0.000 1.00 0.01
AGE *NW,,; 0.000 0000 0.000 0000 1.00 0.01
AGE*CLi,; 0.000 0000 0.000 0.000  1.00 0.01

AGE; . 1*K; .1 0.000 0.000 0.000  0.000 1.00 0.01
AGE; . *IN. ., 0.000 0.000  0.000 0.000 1.04 0.14
TLi 1 *NWig 0.000 0.000 0.000 0.000 1.00 0.01
TLis1*CLis 6.000 0.000 0.000 0.000 1.00 0.01
TLi1*Kis 0.000  0.000 0.000 0.000 1.00 0.02
TLigt* N1 0.000 0.000 0.000  0.000 1.00 0.03
NW;1*CLit 0.000 0.000 0.000 0.000 1.00 0.04
NWi1*Kir1 0.000  0.000 0.000  0.000 1.00 0.01
NW; o * N 0.000 0.000 0.000  0.000 1.00 0.02
CLir1*Kir1 0.000 0.000 0.000  0.000 1.00 0.02
CList*I 0.000 0.000 0000 0.000 1.02 0.60
Kipt*IVip 0.000  0.000 0.000 0.000 1.01 2.22
Parameter

n 0.709 0669 0.709  0.747 1.00

o¢ 0.879 0.780 0.877  0.991 1.00

G, 0.455 0.249 0.426 0.818 1.00
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Table A2.4. Summary of results for model Var50ut5

Posterior Posterior quantiles % of times

Variable Mean 2.5% 50%  97.5% VR chosen
Intercept -0.097 -1.224 -0.058 0.649 1.10  100.00
AQ;; 0.025 0.000  0.026 0.044 1.00  90.21
Vie 0.017 0.010  0.017 0.025 1.00 99.79
Cix 0.008 0.000  0.000 0.092 1.00 14.17
AGE;,, -0.004 -0.013  0.000 0.000 1.00 4685
TL..1 0.000 0.000  0.000 0.000 1.00 0.26
NWi 0.000 0.000  0.000 0.000 1.00 0.19
CLix 0.000 0.000  0.000 0.000 1.03 0.51
Kizt -0.060 -0.073 -0.060 -0.046 1.00 100.00
-0.040 -0.090 -0.048 0.000 1.00 69.05
AQ: 0.000 0.000  0.000 0.000 1.00 0.06
Vid 0.000 0.000  0.000 0.000 1.00 0.54
i 0.000 0.000  0.000 0.000 1.01 2.75
AGE;,.;’ 0.000 0.000  0.000 0.000 1.00 0.05
TLixi’ 0.000 0.000  0.000 0.000 1.00 0.02
NW,..i2 0000 0.000 0.000 0.000 1.00 0.01
CL ;.. 0.000 0.000  0.000 0.000 1.00 0.11
Kiw? 0.000 0.000  0.000 0.000 1.00 0.06
MNit? 0.019 0.000  0.020 0.026 1.02 9701
AQi*Vi, 0.000 0.000  0.000 0.000 1.00 0.16
AQi*C;, 0.000 0.000  0.000 0.000 1.02 0.26
AQi*AGEi,. 0.000 0.000  0.000 0.000 1.00 0.06
AQ;*TLi,., 0.000 -0.001  0.000 0.000 1.02  29.66
AQi*NW,,. 0.000 0.000  0.000 0.000 1.00 0.02
AQ;i*CLiy. 0.000 -0.002  G.000 0.000 1.01 15.84
AQ;*Kis1 0.000 0.000  0.000 0.000 1.06 1.26
AQi*Nsy 0.000 0.000 0.000 0000 1.03 0.33
Vis*Ci, 0.000 0.000  0.000 0.000 1.00 0.23
Vi:*AGE;i . 0.000 0.000  0.000 0.000 1.00 0.05
Vir*TLi 0.000 0.000  0.000 0.000 1.00 0.06
Vi *NWi.. 0.000 0.000  0.000 0.000 1.00 0.87
Vir*CLir 0.000 0.000  0.000 0.000 1.00 0.21
Vi*Kis 0.000 0.000  0.000 0.000 1.00 0.10
Vi TN 0.000 0.000  0.000 0.000 1.00 0.24
Ci:*AGE;,. 0.000 0.000  0.000 0.000 1.00 0.19
Cii*TLis 0.000 -0.002  0.000 0.000 1.00 3.45
Cis*NW,,. 0.000 0.000  0.000 0.000 1.00 0.06
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Table A2.4. (continued)

Posterior Posterior quantiles % of times
Variable Mean  2.5%  50% 97.5% VR  chosen
Ci*CLis 0.000 0.000 0.000 0.000 1.01 2.06
Cii*Kie -0.001 -0.011 0.000 0.000 1.00 18.66
Cir*INi 0.000 0.000 0.000 0.000 1.00 2.40

AGE; 1 *TL; 0.000 0.000 0.000 0.000 1.00 0.03
AGEi ./ *NW;.;  0.000 0.000 0.000 0.000 1.00 0.03
AGE;;.1*CLig 0.000 0.000 0.000 0.000 1.00 0.06

AGE; 11*Ki 0.000 0.000  0.000 0.000 1.00 0.06
AGE; . *T";. ., 0.000 0.000  0.000 0.000 1.00 0.81
TLi 1 *NWi 0.000 0.000  0.000 0.000 1.00 0.07
TLis1*CLita 0.000 0.000  0.000 0.000 1.00 0.03
TLie1*Kis 0.000 0.000  0.000 0.000 1.00 0.03
TLiw*TNi 0.000 0.000  0.000 0.000 1.00 0.12
NWi1*CLix 0.000 0.000  0.000 0.000 1.00 0.13
NWi 1 *Ki 0.000 0.000  0.000 0.000 1.00 0.03
NWie i * N0 0.000 0.000  0.000 0.000 1.00 0.07
CLit1*Kiz 0.000 0.000  0.000 0.000 1.00 0.09
CLizt*INist 0.000 0.000  0.000 0.000 1.01 1.60
Kir1* T 0.000 0.000 0.000  0.000 1.09 1.84
Parameter

n 0.732 0.692  0.732 0.769 1.00

o’ 0906  0.804  0.904 1.019 1.00

G, 0.458 0.248  0.428 0.844 1.01
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Table A2.5. Summary of results for model Var50ut9

Posterior Posterior quantiles % of times

Variable Mean 2.5% 50% 97.5% )\M chosen
Intercept -0.149 -1251 -0.103 0.700  1.06 100.00
AQ;; 0.025 0.000 0.026  0.043 1.00 9149
Vie . 0.018  0.010 0.018 0.026 1.00 99.85
Cix 0.008 0.000 0.000 0.091 1.01 1193
AGEi,, -0.004 -0.013  0.000  0.000 1.00 46.26
TLis 0.000  0.000 0.000  0.000 1.00 0.23
NWi,.s 0.000 0.000 0.000 0.000 1.00 0.18
CLi 0.000 0000 0000 0.000 1.03 0.52
Kirt -0.060 -0.074 -0.060 -0.047 1.00  99.99
| -0.038  -0.091 -0.045 0.000 1.00 6721
AQ;l 0.000 0.000 0.000  0.000 1.00 0.06
Vi 0.000 0.000 0.000 0.000 1.00 0.34

i 0.000 0.000 0.000 0.000 1.02 2.34
AGE;.\* 0.000  0.000  0.000 0.000 1.00 0.03
TLiwt? 0.000 0.000 0000 0.000 1.00 0.01
NWi,.. 0.000 0.000 0.000  0.000 1.00 0.01
CL v’ 0.000 0.000 0.000  0.000 1.00 0.10
Kin? 0.000  0.000  0.000 0.000 1.00 0.06
| 0019 0.000 0020 0.026 101 9790
AQi*Vi, 0.000 0.000 0.000  0.000 1.00 0.15
AQi*Ci; 0.000  0.000 0.000  0.000 1.04 0.29
AQi*AGE;,. 0.000 0.000 0.000  0.000 1.00 0.08
AQi*TList 0.000 -0.001 0.000 0.000 1.00 28.56
AQi*NWi 0.000 0.000 0.000 0000 1.00 0.03
AQ;*CLiz 0.000 -0.002  0.000 0.000 1.03  15.00
AQi*Kis1 0.000 0.000 0.000  0.000 1.01 1.08
AQi TN 0.000 0.000 0.000 0.000 1.05 0.33
Vi*Ci, 0.000 0.000 0.000  0.000 1.00 0.24
Vi*AGE;i 0.000 0.000 0.000  0.000 1.00 0.06
Vi*TLiw 0.000 0.000 0.000  0.000 1.00 0.06
Vi*NWi,. 0.000 0.000 0.000  0.000 1.00 0.53
Vi *CLip 0.000 0000 0.000 0.000 1.00 0.30
Vie*Ki 0.000 0.000 0.000  0.000 1.00 0.07
Vi N 0.000 0.000 0.000  0.000 1.12 0.24
Ci.*AGEi,. 0.000 0.000 0.000  0.000 1.00 0.18
Cii*TLis 0.000 -0.002 0.000 0.000 1.0l 3.86
Ci*NWi . 0.000 0.000 0.000  0.000 1.00 0.08

Ci*CLis 0.000 0.000 0.000 0.000 1.01 2.07
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Table A2.5. (continued)

Posterior Posterior quantiles % of times
Variable Mean  25% 50% 97.5% VR  chosen
Ci*Kis -0.001 -0.011 0.000 0.000 1.00 15.38
C* 0000 0000 0000 0000 100  2.18

AGE; *TLi, 0.000 0.000  0.000 0.000 1.00 0.05
AGE;.i*NW,,;, 0.000 0.000 0.000 0.000 1.00 0.02
AGE;.1*CL; ;4 0.000 0.000  0.000 0.000 1.00 0.06

AGE;1*K; 0.000  0.000 0.000 0.000  1.00 0.07
AGE;;.,*T";,., 0.000  0.000 0.0C0 0.000 1.0l 0.78
TLis *NW,, 0.000 0.000 0.000 0.000  1.00 0.06
TLiz1*CLiy. 0.000 0.000 0.000 0.000  1.00 0.02
TLiw1*Kis 0.000 0.000 0.000 0.000  1.00 0.04
TLii* i 0.000  0.000  0.000 0.000 1.00 0.18
NWi. 1 *CLig 0.000 0000 0.000 0.000  1.00 0.17
NWi1* Koo 0.000  0.000 0.000 0.000 1.00 0.04
NWi 4N 0.000 0.000 0.000 0.000 1.00 0.08
CLi21*Kip1 0.000 0.000 0.000 0.000  1.00 0.06
CLinr*INiy 0.000  0.000 0.000 0.001 1.03 291
Ki* T 0.000 0.000 0.000 0.000 1.10 1.40
Parameter

n 0.708  0.668  0.708 0.747 1.00

oe 0.866 0.769  0.864 0.977 1.00

o, 0.465 0.251 0.434 0.860 1.01
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Table A2.6. Summary of results for model Var9Out1

Posterior Posterior quantiles % of times

Variable Mean 2.5% 50% 97.5% VR chosen
Intercept -0046 -0917 -0.061 0.761 1.08 100.00
AQ;; 0.028 0.011 0.029  0.043 1.00  99.12
Vi 0.017 0.009 0.017  0.026 1.00  99.93
Ci: 0.023 ~ -0.007 0.000 0.109 1.01 4598
AGE;, -0.007 -0.014 -0.008  0.000 1.00 83.19
TLi 0.000 0.000 0.000  0.000 1.01 1.94
NWi, 0.000 0.000 0.000  0.000 1.00 1.36
CLis 0.000 0.000 0.000  0.000 1.00 434
Kist -0.058 -0.071  -0.058 -0.046 1.00 100.00
M -0.054 -0.094 -0.056 0.000 1.00  94.65
AQ; 2 0.000  0.000 0.000  0.000 1.00 0.62
Vil 0.000 0.000 0.000  0.000 1.00 2.53

2 -0.004 -0.033 0.000  0.000 1.00 20.18
AGE;,.,2 0.000 0.000 0.000  0.000 1.00 0.27
TLiss? 0.000  0.000 0.000  0.000 1.00 0.04
NW...2 0.000 0.000 0.000  0.000 1.00 0.03
CL i’ 0.000 0.000 0.000  0.000 1.00 0.73
Kiui® 0.000 0.000 0.000  0.000 1.00 0.53
| Y 0.020 0.013 0.021  0.027 1.09  99.32
AQi*Vi, 0.000  0.000 0.000  0.000 1.00 0.57
AQi*Ci, 0.000  0.000 0.000  0.000 1.00 2.54
AQi*AGE;,, 0.000  0.000 0.000  0.000 1.00 0.50
AQi*TLisy 0.000 -0.001 0.000  0.000 1.01  48.87
AQi*NWi, 0.000 0.000 0.000 0.000 1.00 0.28
AQi*CLis 0.000 -0.002 0.000  0.000 1.01 2523
AQ;i*Kis 0.000 -0.001 0.000  0.000 1.02 3.58
AQi* TN, 0.000 0.000 0.000  0.000 1.01 2.07
Vi *Ci; 0.000  0.000 0.000  0.000 1.01 227
Vit*AGEi 0.000  0.000 0.000  0.000 1.00 028
Vie*TLis 0.000 0.000 0.000  0.000 1.00 0.26
Vie*NWi 0.000 0.000 0.000  0.000 1.00 3.51
Vir*CLisi 0.000 0.000 0.000  0.000 1.00 1.98
Vir*Kir 0.000 0.000 0.000  0.000 1.00 0.62
A7 0.000 0.000 0.000  0.000 1.00 1.65
Ci.*AGE;, 0.000 0.000 0.000  0.000 1.01 1.32
Ci*TLiy 0.000 -0.003 0.000  0.000 1.00 9.52
Ci*NWi ., 0.000 0.000 0.000  0.000 1.00 0.68

Ci*CLix1 0.000 -0.004 0.000 0.000 1.00 6.21
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Table A2.6. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% \/ﬁ chosen
Cii*Kip -0.003  -0.012 0.000 0.000 1.00 42.18
Ci* TN -0.001  -0.017 0.000 0.000 1.00 12.37

AGE;;1*TL;s 0.000 0.000 0.000 0.000 1.00 0.29
AGE;..*NW,;;,  0.000 0.000 0.000 0.000 1.00 0.10
AGE;1*CLig1 0.000 0.000 0.000 0.000 1.00 0.62

AGE;.1*Ki .1 0.000 0.000 0.000  0.000 1.00 0.94
AGEi..*INi1 0.000  0.000 0.000  0.002 1.00 4.50
TLis *NWiy, 0.000 0.000 0.000 0.000 1.00 0.36
TLi;1*CLis 0.000 0.000 0.000  0.000 1.00 0.19
TLi1*Kira 0.000 0.000 0.000  0.000 1.00 0.39
TLip* s 0.000 0.000 0.000 0.000 1.05 1.36
NW,..1*CLix1 0.000 0.000 0.000 0.000 1.00 0.77
NW, 1 *Kip1 0.000 0.000 0.000  0.000 1.00 0.11
NW N 0.000 0.000 0.000 0.000 1.00 0.50
CLit-1*Kiz1 0.000 0.000 0.000 0.000 1.00 0.60
CLi1*Nir 0.000 0000 0000 0006 101 8.63
L 0.000 0.000 0.000 0.001 1.82 2.79
Parameter

n 0.742 0.703 0742  0.778 1.00

o 0919 0813 0917 1.035 1.00

o’ 0.461 0.251 0.431 0.848 1.00
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Table A2.7. Summary of results for model Var9Out5

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% VR  chosen
Intercept -0.125 -1.113 -0.145  1.063 1.06 100.00
AQ;; 0.028  0.011 0.029  0.043 1.00  99.00
Vix 0017 0009 0.017  0.025 1.01  99.80
Ci: 0.023 -0.007  0.000 0.109 1.01  46.13
AGE;, -0.007 -0.014 -0.008 0000 1.00 83.38
TLis1 0.000 0000 0.000 0.000 1.01 2.11
NWir 0.000 0.000 0.000 0000 1.03 1.31
CLixs 0.000 0000 0.000 0000 1.01 4.50
Kiz -0.059 -0072 -0.059 -0.045 1.00  99.99
| -0.054 -0093 -0.056 0000 1.00 94.39
AQ;2 0.000 0000 0.000 0.000 1.00 0.62
Vil 0.000 0.000 0000  0.000 1.00 2.11
Cif -0.003 -0029 0.000 0.000 101 1899
AGE;./° 0.000 0000 0.000 0.000 1.00 020
TLiwi’ 0.000 0.000 0.000  0.000 1.00 0.05
NWi,..2 0.000 0.000 0000  0.000 1.00 0.02
CLiw’ 0.000 0000 0.000 0.000 1.00 0.86
Kii’ 0.000 0000 0.000 0.000 1.00 0.58
) 0020 0013 0.021 0026 1.07 99.41
AQi*Vi, 0.000 0.000 0000 0.000 1.00 0.63
AQ;*Ci; 0.000 0000 0.000 0.000 1.00 2.50
AQi*AGE ., 0000 0000 0.000 0.000 1.00 0.57
AQi*TLis 0.000  -0.001 0.000 0.000 1.00 48.04
AQi*NW, ., 0.000 0.000 0.000 0000 1.00 0.17
AQi*CLi,. 0.000 -0.002  0.000 0.000 1.00 24.88
AQi*Kis 0.000 -0.002 0.000 0.000 1.01 4.01
AQi .. 0000 0000 0.000 0.000 1.00 2.23
Vir*Ci 0000 0000 0.000 0.000 102 2.41
Vi*AGE;;.1 0.000 0.000 0.000 0.000 1.00 0.29
Vir*TLiz 0.000 0.000 0.000 0.000 1.00 0.27
Vi*NWi 0.000 0.000 0.000 0.000 1.00 3.31
Vit*CLigt 0000 0000 0.000 0000 1.00 228
Vie*Kiz 0.000 0000 0.000 0.000 1.00 0.54
Vi i 0.000 0000 0.000 0.000 1.01 1.61
Cit*AGEi . 0.000 0.000 0.000  0.000 1.00 1.42
Ci*TLigt 0.000 -0003 0.000 0.000 100 10.16
Ci*NWi,. 0000 0000 0.000 0.000 1.00 0.65

Ci*CLis 0.000  -0.005 0.000 0.000 1.01 6.53
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Table A2.7. (continued)

Posterior Posterior quantiles % of times
Variable Mean  2.5%  S0% 97.5% VR  chosen
Ci*Kira -0.003 -0.012 0.000 0.000 1.00 4124
Cie* it -0.001 -0.017 0.000 0.000 1.00 12.16

AGE;1*TLis 0.000 0.000 0.000 0.000 1.00 0.28
AGE; *NW,;,, 0.000 0.000 0.000 0.000 1.00 0.10
AGE;;. *CLi; 0.000 0.000 0.000 0.000 1.00 0.54

AGE;;1*K,.1 0.000 0.000 0.000 0.000 1.00 0.93
AGE; .. *T,,.1 0.000 0.000  0.000  0.002 1.00 4.49
TLis1*NWi,, 0.000 0.000  0.000  0.000 1.00 0.36
TLiz1*CLig1 0.000 0.000 0000  0.000 1.00 0.16
TLip1*Kigr 0.000 0000 0.000 0.000 1.00 0.31
TLig* i 0.000 0.000 0.000 0.000 1.05 1.41
NWi;1*CLiz 0.000 0000 0000 0000 1.00 0.96
NWi1*Kic1 0.000 0.000 0.000 0.000 1.00 0.13
NWi o *1N0 0.000 0.000 0.000 0.000 1.00 0.54
CLit1*Kizi 0.000 0.000 0.000 0.000 1.00 0.55
CLis1*i 0.000 0000 0000 0.006 1.02 9.55
Kie1*Nis1 0.000 0.000 0.000 0.000 1.71 2.83
Parameter

n 0734 0695 0734 0.772 1.00

o 0.905 0.801 0903  1.020 1.00

o, 0.478 0254 0446  0.892 1.01
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Table A2.8. Summary of resuits for model Var9Out9

Posterior Posterior quantiles % of times

Variable Mean 2.5% 50% 97.5% a\m chosen
Intercept 0249 -1340 -0253 0706 1.06 100.00
AQ;, 0029 0012 0030 0.044 100 99.17
Vis 0017 0009 0.017 0026 100 99.89
Ci 0022 -0.008 0.000 0.104 100 46.18
AGE,, -0.007 -0014 -0.008 0000 100 83.06
TLiz 0000 0.000 0000 0.000 1.00 1.98
NWi,. 0000 0.000 0000 0.000 1.04 1.33
CLix1 0000 0000 0.000 0.000 1.01 4.44
Kis1 -0.059 -0.072 -0059 -0.046 1.00 100.00
| -0.055 -0094 -0057 0000 100 94.00
AQ: 2 0000 0000 0000 0.000 1.00 0.57
Vi 0000 0000 0.000 0.000 100 1.93

i -0.003 -0030 0000 0000 100 1837
AGE;,.. 0000 0.000 0000 0.000 1.00 0.23
TLiss’ 0000 0000 0000 0.000 1.00 0.06
NW...,> 0.000 0000 0000 0.000 1.00 0.03
CL ;.. 0000 0.000 0000  0.000 1.00 0.75
Kiei? 0000 0000 0.000 0.000 1.00 0.51
Nt 0020 0014 0021 0.026 1.01 99.14
AQi*Vi, 0000 0000 0.000 0.000 1.00 0.58
AQ:*Ci, 0000 0.000 0000 0.000 1.00 2.64
AQi*AGE;,. 0000 0.000 0000 0.000 1.00 0.47
AQi*TLi,s 0000 -0.001 0.000 0000 100 4597
AQi*NW,,, 0000 0.000 0000 0.000 1.00 024
AQis*CLigy 0.000 -0.002 0000 0000 100 2993
AQi*Kic 0.000 -0.001 0.000 0.000 1.02 3.34
AQi TN, 0000 0.000 0000 0000 1.00 2.18
Vi*Cy; 0000 0000 0000 0.000 105 2.14
Vi *AGE;,. 0000 0.000 0000 0.000 1.00 0.30
Vi*TLigt 0.000 0.000 0.000 0000 1.00 0.26
Vi *NWi,, 0000 0000 0000 0000 1.00 2.65
Vis*CLis 0000 0000 0000 0000 1.00 1.96
Vie*Kisi 0.000 0.000 0000 0000 1.00 0.50
VitV 0.000 0.000 0.000 0.000 1.01 1.73
Ci*AGEi,, 0000 0000 0000 0000 1.01 1.38
Cis*TLis 0.000 -0.003 0000 0000 100 10.30
Ci*NWi,. 0.000 0000 0000 0000 1.00 0.63
Ci;*CLiy 0.000 -0005 0000 0000 1.00 6.44
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Table A2.8. (continued)

Posterior Posterior quantiles % of times
Variable Mean 2.5% 50% 97.5% \/E chosen
Ci*Kiri -0.003 -0.011 0.000 0.000 1.00 36.05
Ci* Vit -0.001 -0.016  0.000  0.000 1.00 11.62

AGEi.*TL,, 0.000 0.000 0000 0000 100 030
AGE . *NW,: 0.000 0000 0000 0000 1.00  0.10
AGE;.*CL,; 0000  0.000 0000 0000 1.00  0.58

AGE; ;.1 *Kis 0.000 0000 0.000 0000 1.00 0.94
AGE;;.*T",,., 0.000 0.000 0.000 0002 1.00 4.55
TLi *NWiyg 0.000 0.000 0.000 0000 1.00 0.36
TLit1*CLiz1 0.000 0.000 0.000 0.000 1.00 0.20
TLi 1 *Kis 0.000 0.000 0.000 0000 1.00 0.30
TLi ot *T i 0.000 0000 0.000 0000 107 1.80
NW,.1*CL; 0.000 0.000 0.000 0000 1.00 0.82
NW.1*Ki 0.000 0.000 0.000 0000 1.00 0.10
NW. o * TN 0.000 0.000 0.000 0000 1.00 0.51
CLir1*Kit 0.000 0.000 0.000 0000 1.00 0.60
CLigt* i 0001 0000 0.000 0007 100 1193
| P 0.000 0.000 0.000 0000 1.07 2.93
Parameter

n 0710 0671 0710 0.747  1.00

ol 083 0770 0.861 0968  1.00

o, 0.476 0.253 0.445 0.892 1.01
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APPENDIX 3. SUBMODEL PARAMETER ESTIMATES

Table A3.1. Submodel parameter estimates

Parameter Value S.E. Value S. E. Value S.E.
Adj. costs
0o 0.009 0.054 0.138"  0.062 0.049 0.060
Fin. constraint
Po -0.002 0.033 0.042 0.022 0.046 0.033
p1 (AGE..) -0.0033  0.0034 -0.0016  0.0026
P2 (V) 0.0091" 0.0040 0.0041  0.0026
p3 (TLw) 0.0007 0.0031 0.0051  0.0027
ps NW,)  -0.0028 0.0017  -0.0007  0.0013 -0.0021  0.0018
ps (CLur) 0.0090 0.0088  -0.0083  0.0068 00116  0.0062
ps (AGE..) 2.5x10*  1.8x10* -1.4x10*  1.5x10°
pr (Vo) -3.0x10*  1.2x10* -1.82x10*"  7.9x10°
ps (TLe) 9.0x10°  7.5x10°  -6.3x10° 4.5x10°
P NW.)?  9.9x10™  4.0x10°  6.5x10° 9.4x10°  7.5x10% 3.3x10°
pro (CL.)?  -2.09x10°°  89x10*  3.2x10* 3.4x10* -1.70x10*" 7.3x10*
J-stat. tests p-value p-value p-value
* (O.R.) 6.56 0.5846 9.93 02702 791 0.4419
d.f 8 8 8
¥ (vs. full) 1.84 0.3991 5.20 0.0742  3.19 0.2029
df 2 2 2

*0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed -statistic.
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Parameter Value S.E. Value S.E. Value S.E.
Adj. costs
8o 0.129 0.058 0.141° 0.063 0.122 0.048
Fin. constraint
Po 0.035 0.039 0.038 0.044 0.039 0.014
P (AGE.)  -0.0027 0.0031  -0.0066  0.0036
P2 (V) 0.0000 0.0022 0.0009  0.0028
p3 (TLw) 0.0039 0.0031 0.0013  0.0025  0.0048  0.0025
ps (NW,) -0.0011  0.0020 -0.00089  0.00090
ps (CLv1) -0.0084 0.0068 -0.0070  0.0064
ps (AGE.1)> -2.1x10" 1.7x10*  -3.8x10* 1.9x10™
pr (Vi) 0.4x10°  3.6x10° 4.0x10° 5.2x10°
ps (TLw) 2.4x10° 72x10°  04x10° 79x10° -7.5x10°  3.7x10°
po (NW,)? 1.5x10*  1.6x10° 1.0x10°  7.3x10°
p1o (CLw)? 3.6x10* 2.5x10™ 1.2x10*  2.6x10°
J-stat. tests® p-value p-value p-value
x> (O.R) 10.88 0.2086 8.922 0.3489 1549 0.1153
df 8 8 10
x* (vs. full) 6.15 0.0461 420 0.1226 10.76 0.0294
d.f 2 2 4

*Q. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.
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Parameter Value S.E. Value S.E. Value S.E.
Adj. costs
G 0.015 0.052 0.113° 0.047 0.117 0.048
Fin. constraint
Po 0.035 0.025 0.021 0.031 0.040 0.033
P (AGE..) .
p2 (V) 0.0046 0.0023 0.0005  0.0019  -0.0001 0.0022
p3 (TLet) 0.0035  0.0028  0.0000 0.0022
ps NW,;)  -0.0019 0.0015 -0.0005 0.0012
ps (CLw) 0.0107 0.0059  -0.0087  0.0067
Ps (AGE..)’
pr (Vo) -1.98x10*  7.9x10° -0.9x10° 3.2x10° -0.7x10°  3.2x10°
ps (TLwr)? -1.7x10°  6.2x10°  1.3x10°  6.7x10°
po (NW,,)? 8.0x10%"  3.3x10° 1.8x10°  5.9x10°
po (CLw)*  -1.80x10%"  7.1x10*  2.8x10*  2.4x10™
J-stat. tests® p-value p-value p-value
¥ (O.R) 8.53 0.5774  15.49 0.1152  15.99 0.0998
df 10 10 10
$* (vs.full  3.80 04332  10.77 0.0293 11.27 0.0237
d.f 4 4 4

?0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.

“Significantly different from zero at the 5% level based on the two-tailed r-statistic. -
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Parameter Value S.E. Value S.E. Value S.E.

Adj. costs
6o 0.115 0.054 0.137 0.047 0.127 0.051

Fin. constraint
Po 0.033 0.020 0.037 0.016 0.034 0.021
p1 (AGE,;) -0.0035 0.0034  -0.0024  0.0028  -0.0042 0.0025
p2 (V)
p3 (TLw) 0.0042 0.0026  0.0026 0.0017
ps NW,;)  -0.0000 0.0011 -0.0006 0.0013
ps (CLw1) 0.0001 0.0034  -0.0089  0.0064
ps (AGE.) -2.0x10* 1.7x10*  -2.0x10*  1.5x10* -2.5x10*  1.3x10*
P (Vt)z
ps (TLw)? -3.5x10°  2.0x10° -4.8x10°  3.9x10°
ps NW.,)2  0.3x10° 3.6x10° 7.1x10°  9.6x10°
p1o (CLu1)? 0.9x10™ 2.0x10*  3.7x10*  2.4x10*

J-stat. tests" p-value p-value p-value
¥’ (O.R.) 13.28 0.2083  11.60 03124  10.85 0.3696
df 10 10 10
¥* (vs.full  8.56 0.0732 6.88 0.1424  6.12 0.1903
d.f 4 4 4

*0O. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
"Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.
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Parameter Value S.E. Value S.E. Value S.E.
Adj. costs

8o 0.108 0.058 -1.89° 0.74 0.111° 0.042
Fin. constraint

Po 0.063 0.040 -13 31 0.034" 0.013

p (AGE.) -0.0038 0.0028 -0.03 0.15

pz (Vo) -0.0012 0.0020 5 10

ps (TLw) 0.14 0.28

ps (NW,.1) 0.0000 0.0016 -0.00042  0.00066

ps (CLw1) -0.0003 0.0030

ps (AGE..)> -0.00023 0.00016  -0.010 0.016

pr (V)? -0.9x10° 2.3x10°  -0.37 0.82

ps (TL..)’ -0.007 0.016

po NW.)>  0.6x107 1.2x10° 1.1x10°  2.2x10°

po (CLw1) 0.00002  0.00014
J-stat. tests’ p-value p-value p-value

x> (O.R) 11.49 0.3203 1.72 0.6559 19.03 0.0877

d.f 10 10 12

¥: (vs. ful)  6.77 0.1486 3.00 0.5582 14.31 0.0264

d. f 4 4 6

*0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed r-statistic.
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Parameter Value S.E. Value S.E. Value S.E.
Adj. costs
6o 0.114° 0.044 0.132° 0.046 0.109° 0.045
Fin. constraint
Po 0.0284" 0.0074 0.038" 0.014 0.050 0.029
p1 (AGEw.)
p2 (V) -0.0010 0.0017
ps (TLw) 0.0037 0.0024 0.00082  0.00091
ps (NW,) -0.00068  0.00081 -0.0002 0.0011
ps (CLyy) -0.0082 0.0065
Ps (AGE..)’ )
pr (Vo) 3.4x10°  1.2x10°
ps (TL.)? -3.1x10° 1.9x10° -0.8x10° 1.2x10°
ps (NW,.;)? 2.3x10°  49x10° 1.2x10°  5.7x10°
pro (CLu)®  0.00027  0.00024
J-stat. tests’ p-value __p-value p-value
¥* (O.R) 15.49 02156  17.67 0.1261 16.17 0.1836
df 12 12 12
¥* (vs.full) 10.77 0.0958  12.94 0.0439 11.44 0.0756
d.f 6 6 6

*O. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The
parameter estimates for the time effects are not presented.

“Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.
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Parameter Value S.E. Value S.E. Value S.E.

Adj. costs
0o 0.109 0.042 0.139°  0.047 0.107 0.037

Fin. constraint
Po 0.033" 0.014 0.032°  0.014 0.032° 0.011
Pt (AGE.;) -0.0007 0.0010  -0.0016  0.0015
p2 (VY)
ps (TLw) 0.0014  0.0013
ps NWe1) 0.00006 0.00049 -0.00025  0.00035
ps (CLiw1)
ps (AGE.) -4.5x10° 8.3x10° -1.25x10* 9.6x10°
pr (VY
ps (TLe)? -1.2x10°  1.1x10°
pe (NW.,)>  -0.5x10° 1.7x10°¢ 0.6x10°  1.2x10°
p1o (CLut)?

J-stat. tests® p-value p-value p-value
¥’ (0O.R) 18.17 0.1107 14.72 02570 18.87 0.1701
d f 12 12 14
¥ (vs.full) 13.44 0.0365  10.00 0.1248 14.14 0.0781
d. f 6 6 8

*0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
“Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.
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Parameter Value S.E. Value S.E.

Adij. costs
8o 0.100° 0.040 0.070° 0.031

Fin. constraint
Po 0.0253° 0.0077 0.024° 0.012
p1 (AGE..1) 0.00025  0.00069
p2 (Vo)
p3 (TLet) 0.00021 0.00078
ps (NWLy)
ps (CLw1)
ps (AGEw)’ -8.7x10°  5.8x10°
pr (Vo)
ps (TLe1)? -2.8x10° 6.2x10°°
po (NWo1)*
p1o (CLwt)?

J-stat. tests’ p-value p-value
¥ (0.R) 18.80 0.1726  22.67 0.0659
d£f 14 14
¥ (vs.full) 14.08 0.0797 1794 0.0217
df 8 8

*0. R. stands for overidentifying restrictions, full stands for Model 3 in Table 6.2. The

parameter estimates for the time effects are not presented.
Significantly different from zero at the 5% level based on the two-tailed ¢-statistic.
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